High strain rate plastic deformation driven microstructure evolution in AlCoCrFeNi dual-phase high entropy alloy

被引:6
|
作者
Cui, C. Y. [1 ]
Yang, J. [1 ]
Chen, L. [1 ]
Shen, P. [1 ]
Li, X. D. [1 ]
Lu, J. Z. [1 ]
机构
[1] Jiangsu Univ, Sch Mech Engn, Zhenjiang 212013, Peoples R China
关键词
High entropy alloy (HEA); Laser shock processing (LSP); Microstructure evolution; Plastic deformation; Microhardness; MECHANICAL-PROPERTIES; AL ADDITION; PRECIPITATION; BEHAVIOR;
D O I
10.1016/j.intermet.2023.108085
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High strain rate plastic deformation under laser shock processing (LSP) has been applied to the AlCoCrFeNi dual-phase high entropy alloy (HEA) for optimizing the microstructure and properties. Phase constituents, micro-structure evolution of the HEA before and after LSP were investigated. Microstructures of the HEA samples were examined using scanning electron microscopy and transmission electron microscopy. Results showed that the microstructure in the LSPed region was obviously refined. High density dislocations were produced in the alloy and dislocation slip was the main plastic deformation mode during LSP treatment. When the laser energy increased to 5 J and 7 J, nano-precipitates, twins and stacking faults appeared, and the plastic deformation mode was a mixture of deformation twinning and dislocation slip. The refined grains, dislocation structures, deformation-induced twins and stacking faults were analyzed and associated with the microhardness. The microhardness of the HEA was significantly improved after LSP, which can be attributed to the synergistic strengthening of grain refining strengthening, precipitation strengthening and dislocation strengthening.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] The microstructure and mechanical properties of the additive manufactured AlCoCrFeNi high entropy alloy
    Sui, Qingxuan
    Wang, Zhen
    Wang, Jiang
    Xu, Shurong
    Zhao, Fengjun
    Gong, Le
    Liu, Bo
    Liu, Jun
    Liu, Gang
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 833
  • [32] Deformation and microstructure evolution of a high strain rate superplastic Mg-Li-Zn alloy
    Liu, Xuhe
    Du, Guanjun
    Wu, Ruizhi
    Niu, Zhongyi
    Zhang, Milin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2011, 509 (39) : 9558 - 9561
  • [33] Enhanced mechanical properties of NiCoCrCuAl high entropy alloys with dual-phase microstructure
    Zhao, Fa-Chang
    Zhao, Xing-Ming
    Zhao, Rong-Da
    Wu, Fu-Fa
    Chen, Shun-Hua
    INTERMETALLICS, 2025, 178
  • [34] Strain partitioning in dual-phase eutectic high-entropy alloy: Dependence on phase boundary morphology
    Huang, D. C.
    Ran, X. X.
    Cai, Y.
    Liu, X. H.
    Lu, L.
    SCRIPTA MATERIALIA, 2024, 247
  • [35] High-temperature oxidation behavior of AlCoCrFeNi 2.1 eutectic high-entropy alloy: Microstructure evolution and microhardness
    Lin, Guangpei
    Cai, Zhaobing
    Dong, Yinghui
    Wang, Chongmei
    Hu, Juanjuan
    Zhang, Po
    Gu, Le
    MATERIALS CHARACTERIZATION, 2024, 210
  • [36] Effect of Cooling Rate on the Phase Formation of AlCoCrFeNi High-Entropy Alloy
    Sreeramagiri, Praveen
    Roy, Ankit
    Balasubramanian, Ganesh
    JOURNAL OF PHASE EQUILIBRIA AND DIFFUSION, 2021, 42 (05) : 772 - 780
  • [37] High hardness dual-phase high entropy alloy thin films produced by interface alloying
    Cai, Y. P.
    Wang, G. J.
    Ma, Y. J.
    Cao, Z. H.
    Meng, X. K.
    SCRIPTA MATERIALIA, 2019, 162 : 281 - 285
  • [38] Plastic Deformation Mechanism of Dual-phase Steel at Different Strain Rates
    Pang, Qihang
    Zhao, Zhenduo
    Xu, Mei
    Xu, Zhen
    Zhao, Tan
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2020, 35 (06): : 1142 - 1148
  • [39] Microstructure evolution and composition redistribution of FeCoNiCrMn high entropy alloy under extreme plastic deformation
    Yu, Pengfei
    Fan, Ningsong
    Zhang, Yongyun
    Wang, Zhijun
    Li, Wenya
    Lupoi, Rocco
    Yin, Shuo
    MATERIALS RESEARCH LETTERS, 2022, 10 (03): : 124 - 132
  • [40] Microstructure and mechanical property of novel nanoparticles strengthened AlCrCuFeNi dual-phase high entropy alloy
    Wang, Xin
    Liu, Jia
    Zhang, Yunpeng
    Zhang, AMei
    Hou, Hongping
    Miao, Zhuang
    Hongliang, Du
    MATERIALS TODAY COMMUNICATIONS, 2022, 32