Classification of multi-type bearing fault features based on semi-supervised generative adversarial network (GAN)

被引:11
|
作者
Li, Xiao [1 ]
Zhang, Feng-Liang [1 ,2 ]
机构
[1] Harbin Inst Technol, Sch Civil & Environm Engn, Shenzhen 518055, Peoples R China
[2] Harbin Inst Technol, Guangdong Prov Key Lab Intelligent & Resilient Str, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
generative adversarial network; fault diagnosis; semi-supervised learning; clustering; rolling bearing; NOVELTY DETECTION; DIAGNOSIS; PROGNOSTICS; ENSEMBLE; ENTROPY;
D O I
10.1088/1361-6501/ad068e
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Fault diagnosis is a crucial technology for ensuring the reliable and efficient operation of industrial systems. With the advancement of industrial informatization and intelligence, fault diagnosis methods have the trend shifting from traditional signal processing to deep learning. However, traditional deep learning models are not suitable for industrial scenarios with limited labeled data, imbalanced categories. To address these challenges, this paper proposes a novel approach based on semi-supervised generative adversarial networks (SGANs) to systematically study the fault diagnosis of rolling bearings in the case of unlabeled samples and sparsely labeled samples. In this work, the vibration time-domain vibration signal of the bearing is firstly transformed into a spectrum signal through the fast Fourier transform. This transformed signal is then fed into the GAN model to extract multi-layer sensitive features, providing a deeper understanding of the underlying fault characteristics. Subsequently, the SGAN method utilizes unsupervised learning via spectral clustering algorithms to automatically classify fault patterns in industrial equipment. Furthermore, it enhances semi-supervised learning by incorporating limited label information through softmax functions, effectively discerning the authenticity of unlabeled data. For the effectiveness of SGAN for bearing fault diagnosis, two diverse datasets are utilized including the widely-used Case Western Reserve University dataset and data acquired from South Ural State University. Compared to alternative models, the results underscore SGAN's robustness, achieving high recognition accuracy and clustering performance. The proposed methodology contributes to the advancement of fault diagnosis technologies by combining unsupervised and semi-supervised learning techniques.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Semi-supervised generative adversarial network with guaranteed safeness for industrial quality prediction
    Zhang, Xu
    Zou, Yuanyuan
    Li, Shaoyuan
    COMPUTERS & CHEMICAL ENGINEERING, 2021, 153
  • [42] SEMI-SUPERVISED VARIATIONAL GENERATIVE ADVERSARIAL NETWORKS FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Wang, Hao
    Tao, Chao
    Qi, Ji
    Li, HaiFeng
    Tang, YuQi
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 9792 - 9794
  • [43] Semi-supervised Remote Sensing Image Scene Classification Based on Generative Adversarial Networks
    Dongen Guo
    Zechen Wu
    Yuanzheng Zhang
    Zhen Shen
    International Journal of Computational Intelligence Systems, 15
  • [44] Semi-supervised Remote Sensing Image Scene Classification Based on Generative Adversarial Networks
    Guo, Dongen
    Wu, Zechen
    Zhang, Yuanzheng
    Shen, Zhen
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2022, 15 (01)
  • [45] CE-SGAN: Classification enhancement semi-supervised generative adversarial network for lithology identification
    Zhao, Fengda
    Yang, Yang
    Kang, Jingwen
    Li, Xianshan
    GEOENERGY SCIENCE AND ENGINEERING, 2023, 223
  • [46] Fault Diagnosis Based on Sparse Semi-supervised GAN Model
    Liu Xiaozhi
    Wang Yinan
    Yang Yinghua
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 5620 - 5624
  • [47] Semi-supervised generative adversarial networks with spatial coevolution for enhanced image generation and classification
    Toutouh, Jamal
    Nalluru, Subhash
    Hemberg, Erik
    O'Reilly, Una-May
    APPLIED SOFT COMPUTING, 2023, 148
  • [48] A SEMI-SUPERVISED GENERATIVE ADVERSARIAL NETWORK FOR PREDICTION OF GENETIC DISEASE OUTCOMES
    Davi, Caio
    Braga-Neto, Ulisses
    2021 IEEE 31ST INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2021,
  • [49] Semi-supervised semantic segmentation using an improved generative adversarial network
    Xu, Di
    Wang, Zhili
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 40 (05) : 9709 - 9719
  • [50] Semi-TSGAN: Semi-Supervised Learning for Highlight Removal Based on Teacher-Student Generative Adversarial Network
    Zheng, Yuanfeng
    Yan, Yuchen
    Jiang, Hao
    SENSORS, 2024, 24 (10)