Light-driven and bias-free direct conversion of cellulose to electrical power

被引:2
作者
Shemesh, Mor [1 ]
Cohen, Yifat [1 ]
Cohen, Roy [1 ]
Meirovich, Matan M. [1 ]
Herzallh, Nidaa S. [1 ]
Chmelnik, Oleg [1 ]
Shoham, Yuval [1 ]
Yehezkeli, Omer [1 ,2 ,3 ]
机构
[1] Technion Israel Inst Technol, Fac Biotechnol & Food Engn, IL-3200003 Haifa, Israel
[2] Technion Israel Inst Technol, Russell Berrie Nanotechnol Inst, IL-3200003 Haifa, Israel
[3] Technion Israel Inst Technol, Nancy & Stephen Grand Technion Energy Program, IL-3200003 Haifa, Israel
关键词
LIGNOCELLULOSIC BIOMASS; ENERGY; GENERATION; FUTURE;
D O I
10.1016/j.xcrp.2023.101546
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Biomass is an attractive source of renewable energy with the potential to help replace conventional fossil fuels, and efforts are being directed toward its utilization. Polysaccharide-based raw materials can be treated chemically or enzymatically to be further utilized as glucose, added-value chemicals, or fuel. While these industrial processes are well established, direct biomass conversion to pollution -free electrical power still needs to be developed. Herein, we present a biotic-abiotic model system that facilitates direct conversion of cellulosic material into electrical power. The photodriven electro-chemical configuration operates under bias-free conditions to reach above 1 mW/cm2 and 1 V open-circuit voltage while coupled to an enzyme-based biocathode. To enable high photooxidation efficiency, a BiVO4-based photoanode is tailored to suppress undesired competing reactions, namely water oxidation, without affecting glucose-oxidation capabilities. The developed photo(bio)electro-chemical cell presents a platform that may be utilized for the conversion of other environmental threat materials to electrical energy.
引用
收藏
页数:15
相关论文
共 30 条
[1]   Biomass energy and the environmental impacts associated with its production and utilization [J].
Abbasi, Tasneem ;
Abbasi, S. A. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2010, 14 (03) :919-937
[2]   External abiotic glucose fuel cells [J].
Antolini, Ermete .
SUSTAINABLE ENERGY & FUELS, 2021, 5 (20) :5038-5060
[3]   New Energy Sources: The Enzymatic Biofuel Cell [J].
Aquino Neto, Sidney ;
De Andrade, Adalgisa R. .
JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY, 2013, 24 (12) :1891-1912
[4]   Cellulose, cellulases and cellulosomes [J].
Bayer, EA ;
Chanzy, H ;
Lamed, R ;
Shoham, Y .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1998, 8 (05) :548-557
[5]   Fundamentals, Applications, and Future Directions of Bioelectrocatalysis [J].
Chen, Hui ;
Simoska, Olja ;
Lim, Koun ;
Grattieri, Matteo ;
Yuan, Mengwei ;
Dong, Fangyuan ;
Lee, Yoo Seok ;
Beaver, Kevin ;
Weliwatte, Samali ;
Gaffney, Erin M. ;
Minteer, Shelley D. .
CHEMICAL REVIEWS, 2020, 120 (23) :12903-12993
[6]   Lignocellulose degradation mechanisms across the Tree of Life [J].
Cragg, Simon M. ;
Beckham, Gregg T. ;
Bruce, Neil C. ;
Bugg, Timothy D. H. ;
Distel, Daniel L. ;
Dupree, Paul ;
Etxabe, Amaia Green ;
Goodell, Barry S. ;
Jellison, Jody ;
McGeehan, John E. ;
McQueen-Mason, Simon J. ;
Schnorr, Kirk ;
Walton, Paul H. ;
Watts, Joy E. M. ;
Zimmer, Martin .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2015, 29 :108-119
[7]   Electro- and Solar-Driven Fuel Synthesis with First Row Transition Metal Complexes [J].
Dalle, Kristian E. ;
Warnan, Julien ;
Leung, Jane J. ;
Reuillard, Bertrand ;
Karmel, Isabell S. ;
Reisner, Erwin .
CHEMICAL REVIEWS, 2019, 119 (04) :2752-2875
[8]   Determination of Hemicellulose, Cellulose, and Lignin Content in Different Types of Biomasses by Thermogravimetric Analysis and Pseudocomponent Kinetic Model (TGA-PKM Method) [J].
Diez, David ;
Uruena, Ana ;
Pinero, Raul ;
Barrio, Aitor ;
Tamminen, Tarja .
PROCESSES, 2020, 8 (09)
[9]   Cellulases: From Bioactivity to a Variety of Industrial Applications [J].
Ejaz, Uroosa ;
Sohail, Muhammad ;
Ghanemi, Abdelaziz .
BIOMIMETICS, 2021, 6 (03)
[10]   A High Power Buckypaper Biofuel Cell: Exploiting 1,10-Phenanthroline-5,6-dione with FAD-Dependent Dehydrogenase for Catalytically-Powerful Glucose Oxidation [J].
Gross, Andrew. J. ;
Chen, Xiaohong ;
Giroud, Fabien ;
Abreu, Caroline ;
Le Goff, Alan ;
Holzinger, Michael ;
Cosnier, Serge .
ACS CATALYSIS, 2017, 7 (07) :4408-4416