JET D-T scenario with optimized non-thermal fusion

被引:50
作者
Maslov, M. [1 ]
Lerche, E. [1 ,2 ]
Auriemma, F. [3 ,16 ]
Belli, E. [4 ]
Bourdelle, C. [5 ]
Challis, C. D. [1 ]
Chomiczewska, A. [6 ]
Dal Molin, A. [7 ]
Eriksson, J. [8 ]
Garcia, J. [5 ]
Hobirk, J. [9 ]
Ivanova-Stanik, I. [6 ]
Jacquet, Ph. [1 ]
Kappatou, A. [9 ]
Kazakov, Y. [2 ]
Keeling, D. L. [1 ]
King, D. B. [1 ]
Kiptily, V. [1 ]
Kirov, K. [1 ]
Kos, D. [1 ]
Lorenzini, R. [3 ]
de la Luna, E. [10 ]
Maggi, C. F. [1 ]
Mailloux, J. [1 ]
Mantica, P. [7 ]
Marin, M. [11 ]
Matthews, G. [1 ]
Monakhov, I. [1 ]
Nocente, M. [7 ,12 ]
Pucella, G. [13 ]
Rigamonti, D. [7 ]
Rimini, F. [1 ]
Saarelma, S. [1 ]
Salewski, M. [14 ]
Solano, E. R. [10 ]
Stancar, Z. [1 ]
Stankunas, G. [15 ]
Sun, H. [1 ]
Tardocchi, M. [7 ]
Van Eester, D. [2 ]
机构
[1] UKAEA, Culham Sci Ctr, Abingdon OX143DB, England
[2] ERM KMS, Lab Plasma Phys, B-1000 Brussels, Belgium
[3] Univ Padua, CNR, ENEA, Consorzio RFX,INFN,Acciaierie Venete SpA, Corso Stati Uniti 4, I-35127 Padua, Italy
[4] Gen Atom, POB 85608, San Diego, CA 92186 USA
[5] IRFM, CEA, F-13108 St Paul Les Durance, France
[6] Inst Plasma Phys & Laser Microfus, Hery 23, PL-01497 Warsaw, Poland
[7] Inst Plasma Sci & Technol, CNR, Via Cozzi 53, I-20125 Milan, Italy
[8] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden
[9] Max Planck Inst Plasma Phys, Boltzmannstr 2, D-85748 Garching, Germany
[10] CIEMAT, Lab Nacl Fus, Madrid 28040, Spain
[11] Ecole Polytech Fed Lausanne, Swiss Plasma Ctr SPC, CH-1015 Lausanne, Switzerland
[12] Univ Milano Bicocca, Dept Phys, Piazza Sci 3, I-20126 Milan, Italy
[13] ENEA CR Frascati, Via E Fermi 45, I-00044 Frascati, Roma, Italy
[14] Tech Univ Denmark, Dept Phys, Lyngby, Denmark
[15] Lithuanian Energy Inst, Lab Nucl Installat Safety, Kaunas, Lithuania
[16] Ist Sci & Tecnol Plasmi CNR, CNR, Corso Stati Uniti 4, I-35127 Padua, Italy
基金
英国工程与自然科学研究理事会;
关键词
tokamak; nuclear fusion; tritium; TRANSPORT;
D O I
10.1088/1741-4326/ace2d8
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In JET deuterium-tritium (D-T) plasmas, the fusion power is produced through thermonuclear reactions and reactions between thermal ions and fast particles generated by neutral beam injection (NBI) heating or accelerated by electromagnetic wave heating in the ion cyclotron range of frequencies (ICRFs). To complement the experiments with 50/50 D/T mixtures maximizing thermonuclear reactivity, a scenario with dominant non-thermal reactivity has been developed and successfully demonstrated during the second JET deuterium-tritium campaign DTE2, as it was predicted to generate the highest fusion power in JET with a Be/W wall. It was performed in a 15/85 D/T mixture with pure D-NBI heating combined with ICRF heating at the fundamental deuterium resonance. In steady plasma conditions, a record 59 MJ of fusion energy has been achieved in a single pulse, of which 50.5 MJ were produced in a 5 s time window (P fus = 10.1 MW) with average Q = 0.33, confirming predictive modelling in preparation of the experiment. The highest fusion power in these experiments, P fus = 12.5 MW with average Q = 0.38, was achieved over a shorter 2 s time window, with the period of sustainment limited by high-Z impurity accumulation. This scenario provides unique data for the validation of physics-based models used to predict D-T fusion power.
引用
收藏
页数:22
相关论文
共 58 条
[1]  
Alper B., 1994, 21 EPS C CONTR FUS P
[2]   Fast H isotope and impurity mixing in ion-temperature-gradient turbulence [J].
Bourdelle, C. ;
Camenen, Y. ;
Citrin, J. ;
Marin, M. ;
Casson, F. J. ;
Koechl, F. ;
Maslov, M. ;
Abduallev, S. ;
Abhangi, M. ;
Abreu, P. ;
Afzal, M. ;
Aggarwal, K. M. ;
Ahlgren, T. ;
Ahn, J. H. ;
Aho-Mantila, L. ;
Aiba, N. ;
Airila, M. ;
Albanese, R. ;
Aldred, V. ;
Alegre, D. ;
Alessi, E. ;
Aleynikov, P. ;
Alfier, A. ;
Alkseev, A. ;
Allinson, M. ;
Alper, B. ;
Alves, E. ;
Ambrosino, G. ;
Ambrosino, R. ;
Amicucci, L. ;
Amosov, V. ;
Sunden, E. Andersson ;
Angelone, M. ;
Anghel, M. ;
Angioni, C. ;
Appel, L. ;
Appelbee, C. ;
Arena, P. ;
Ariola, M. ;
Arnichand, H. ;
Arshad, S. ;
Ash, A. ;
Ashikawa, N. ;
Aslanyan, V. ;
Asunta, O. ;
Auriemma, F. ;
Austin, Y. ;
Avotina, L. ;
Axton, M. D. ;
Ayres, C. .
NUCLEAR FUSION, 2018, 58 (07)
[3]   Core turbulent transport in tokamak plasmas: bridging theory and experiment with QuaLiKiz [J].
Bourdelle, C. ;
Citrin, J. ;
Baiocchi, B. ;
Casati, A. ;
Cottier, P. ;
Garbet, X. ;
Imbeaux, F. ;
Abhangi, M. ;
Abreu, P. ;
Aftanas, M. ;
Afzal, M. ;
Aggarwal, K. M. ;
Aho-Mantila, L. ;
Ahonen, E. ;
Aints, M. ;
Airila, M. ;
Albanese, R. ;
Alegre, D. ;
Alessi, E. ;
Aleynikov, P. ;
Alfier, A. ;
Alkseev, A. ;
Allan, P. ;
Almaviva, S. ;
Alonso, A. ;
Alper, B. ;
Alsworth, I. ;
Alves, D. ;
Ambrosino, G. ;
Ambrosino, R. ;
Amosov, V. ;
Andersson, F. ;
Andersson Sunden, E. ;
Angelone, M. ;
Anghel, A. ;
Anghel, M. ;
Angioni, C. ;
Appel, L. ;
Apruzzese, G. ;
Arena, P. ;
Ariola, M. ;
Arnichand, H. ;
Arnoux, G. ;
Arshad, S. ;
Ash, A. ;
Asp, E. ;
Asunta, O. ;
Atanasiu, C. V. ;
Austin, Y. ;
Avotina, L. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2016, 58 (01)
[4]  
Breslau J., 2018, USDOE Office of Science TRANSP Computer Software
[5]   Fuel retention studies with the ITER-Like Wall in JET [J].
Brezinsek, S. ;
Loarer, T. ;
Philipps, V. ;
Esser, H. G. ;
Gruenhagen, S. ;
Smith, R. ;
Felton, R. ;
Banks, J. ;
Belo, P. ;
Boboc, A. ;
Bucalossi, J. ;
Clever, M. ;
Coenen, J. W. ;
Coffey, I. ;
Devaux, S. ;
Douai, D. ;
Freisinger, M. ;
Frigione, D. ;
Groth, M. ;
Huber, A. ;
Hobirk, J. ;
Jachmich, S. ;
Knipe, S. ;
Krieger, K. ;
Kruezi, U. ;
Marsen, S. ;
Matthews, G. F. ;
Meigs, A. G. ;
Nave, F. ;
Nunes, I. ;
Neu, R. ;
Roth, J. ;
Stamp, M. F. ;
Vartanian, S. ;
Samm, U. .
NUCLEAR FUSION, 2013, 53 (08)
[6]   Predictive multi-channel flux-driven modelling to optimise ICRH tungsten control and fusion performance in JET [J].
Casson, F. J. ;
Patten, H. ;
Bourdelle, C. ;
Breton, S. ;
Citrin, J. ;
Koechl, F. ;
Sertoli, M. ;
Angioni, C. ;
Baranov, Y. ;
Bilato, R. ;
Belli, E. A. ;
Challis, C. D. ;
Corrigan, G. ;
Czarnecka, A. ;
Ficker, O. ;
Frassinetti, L. ;
Garzotti, L. ;
Goniche, M. ;
Graves, J. P. ;
Johnson, T. ;
Kirov, K. ;
Knight, P. ;
Lerche, E. ;
Mantsinen, M. ;
Mylnar, J. ;
Valisa, M. .
NUCLEAR FUSION, 2020, 60 (06)
[7]  
Cenacchi G., 1988, Tech. Rep.
[8]   NON-INDUCTIVELY DRIVEN CURRENTS IN JET [J].
CHALLIS, CD ;
CORDEY, JG ;
HAMNEN, H ;
STUBBERFIELD, PM ;
CHRISTIANSEN, JP ;
LAZZARO, E ;
MUIR, DG ;
STORK, D ;
THOMPSON, E .
NUCLEAR FUSION, 1989, 29 (04) :563-570
[9]   Overview of tokamak turbulence stabilization by fast ions [J].
Citrin, J. ;
Mantica, P. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2023, 65 (03)
[10]   Tractable flux-driven temperature, density, and rotation profile evolution with the quasilinear gyrokinetic transport model QuaLiKiz [J].
Citrin, J. ;
Bourdelle, C. ;
Casson, F. J. ;
Angioni, C. ;
Bonanomi, N. ;
Camenen, Y. ;
Garbet, X. ;
Garzotti, L. ;
Goerler, T. ;
Gurcan, O. ;
Koechl, F. ;
Imbeaux, F. ;
Linder, O. ;
van de Plassche, K. ;
Strand, P. ;
Szepesi, G. ;
Abduallev, S. ;
Abhangi, M. ;
Abreu, P. ;
Afzal, M. ;
Aggarwal, K. M. ;
Ahlgren, T. ;
Ahn, J. H. ;
Aho-Mantila, L. ;
Aiba, N. ;
Airila, M. ;
Albanese, R. ;
Aldred, V. ;
Alegre, D. ;
Alessi, E. ;
Aleynikov, P. ;
Alfier, A. ;
Alkseev, A. ;
Allinson, M. ;
Alper, B. ;
Alves, E. ;
Ambrosino, G. ;
Ambrosino, R. ;
Amicucci, L. ;
Amosov, V. ;
Sunden, E. Andersson ;
Angelone, M. ;
Anghel, M. ;
Angioni, C. ;
Appel, L. ;
Appelbee, C. ;
Arena, P. ;
Ariola, M. ;
Arnichand, H. ;
Arshad, S. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2017, 59 (12)