Experiment of proof-of-principle on prompt gamma-positron emission tomography (PG-PET) system for in-vivo dose distribution verification in proton therapy

被引:3
作者
Cheon, Bo-Wi [1 ]
Lee, Hyun Cheol [2 ]
You, Sei Hwan [3 ]
Seo, Hee [4 ]
Min, Chul Hee [1 ]
Choi, Hyun Joon [3 ]
机构
[1] Yonsei Univ, Dept Radiat Convergence Engn, Wonju 26493, South Korea
[2] Korea Inst Nucl Nonproliferat & Control, Nucl Mat Anal Team, Daejeon 34054, South Korea
[3] Yonsei Univ, Wonju Severance Christian Hosp, Wonju Coll Med, Dept Radiat Oncol, Wonju, South Korea
[4] Jeonbuk Natl Univ, Dept Quantum Syst Engn, Jeonju, South Korea
基金
新加坡国家研究基金会;
关键词
Proton therapy; Prompt gamma; Positron emission tomography; In vivo dose veri fication; Experiment; Detector; RANGE VERIFICATION;
D O I
10.1016/j.net.2023.03.004
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
In our previous study, we proposed an integrated PG-PET-based imaging method to increase the pre-diction accuracy for patient dose distributions. The purpose of the present study is to experimentally validate the feasibility of the PG-PET system. Based on the detector geometry optimized in the previous study, we constructed a dual-head PG-PET system consisting of a 16 x 16 GAGG scintillator and KETEK SiPM arrays, BaSO4 reflectors, and an 8 x 8 parallel-hole tungsten collimator. The performance of this system as equipped with a proof of principle, we measured the PG and positron emission (PE) distri-butions from a 3 x 6 x 10 cm3 PMMA phantom for a 45 MeV proton beam. The measured depth was about 17 mm and the expected depth was 16 mm in the computation simulation under the same con-ditions as the measurements. In the comparison result, we can find a 1 mm difference between computation simulation and measurement. In this study, our results show the feasibility of the PG-PET system for in-vivo range verification. However, further study should be followed with the consideration of the typical measurement conditions in the clinic application.(c) 2023 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:2018 / 2025
页数:8
相关论文
共 31 条
[1]   GEANT4-a simulation toolkit [J].
Agostinelli, S ;
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Arce, P ;
Asai, M ;
Axen, D ;
Banerjee, S ;
Barrand, G ;
Behner, F ;
Bellagamba, L ;
Boudreau, J ;
Broglia, L ;
Brunengo, A ;
Burkhardt, H ;
Chauvie, S ;
Chuma, J ;
Chytracek, R ;
Cooperman, G ;
Cosmo, G ;
Degtyarenko, P ;
Dell'Acqua, A ;
Depaola, G ;
Dietrich, D ;
Enami, R ;
Feliciello, A ;
Ferguson, C ;
Fesefeldt, H ;
Folger, G ;
Foppiano, F ;
Forti, A ;
Garelli, S ;
Giani, S ;
Giannitrapani, R ;
Gibin, D ;
Cadenas, JJG ;
González, I ;
Abril, GG ;
Greeniaus, G ;
Greiner, W ;
Grichine, V ;
Grossheim, A ;
Guatelli, S ;
Gumplinger, P ;
Hamatsu, R ;
Hashimoto, K ;
Hasui, H ;
Heikkinen, A ;
Howard, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) :250-303
[2]   The influence of the optimization starting conditions on the robustness of intensity-modulated proton therapy plans [J].
Albertini, F. ;
Hug, E. B. ;
Lomax, A. J. .
PHYSICS IN MEDICINE AND BIOLOGY, 2010, 55 (10) :2863-2878
[3]   Dosimetric response of radiochromic films to protons of low energies in the Bragg peak region [J].
Battaglia, M. C. ;
Schardt, D. ;
Espino, J. M. ;
Gallardo, M. I. ;
Cortes-Giraldo, M. A. ;
Quesada, J. M. ;
Lallena, A. M. ;
Miras, H. ;
Guirado, D. .
PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2016, 19 (06)
[4]  
Bugalho R., NUCL INSTRUMENTS MET
[5]   Development of integrated prompt gamma imaging and positron emission tomography system for in vivo 3-D dose verification: a Monte Carlo study [J].
Choi, Hyun Joon ;
Jang, Ji Won ;
Shin, Wook-Geun ;
Park, Hyojun ;
Incerti, Sebastien ;
Min, Chul Hee .
PHYSICS IN MEDICINE AND BIOLOGY, 2020, 65 (10)
[6]   Charged hadron tumour therapy monitoring by means of PET [J].
Enghardt, W ;
Crespo, P ;
Fiedler, F ;
Hinz, R ;
Parodi, K ;
Pawelke, J ;
Pönisch, F .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2004, 525 (1-2) :284-288
[7]   Online proton therapy monitoring: clinical test of a Silicon-photodetector-based in-beam PET [J].
Ferrero, Veronica ;
Fiorina, Elisa ;
Morrocchi, Matteo ;
Pennazio, Francesco ;
Baroni, Guido ;
Battistoni, Giuseppe ;
Belcari, Nicola ;
Camarlinghi, Niccolo ;
Ciocca, Mario ;
Del Guerra, Alberto ;
Donetti, Marco ;
Giordanengo, Simona ;
Giraudo, Giuseppe ;
Patera, Vincenzo ;
Peroni, Cristiana ;
Rivetti, Angelo ;
Rolo, Manuel Dionisio da Rocha ;
Rossi, Sandro ;
Rosso, Valeria ;
Sportelli, Giancarlo ;
Tampellini, Sara ;
Valvo, Francesca ;
Wheadon, Richard ;
Cerello, Piergiorgio ;
Bisogni, Maria Giuseppina .
SCIENTIFIC REPORTS, 2018, 8
[8]   Range assessment in particle therapy based on prompt γ-ray timing measurements [J].
Golnik, Christian ;
Hueso-Gonzalez, Fernando ;
Muller, Andreas ;
Dendooven, Peter ;
Enghardt, Wolfgang ;
Fiedler, Fine ;
Kormoll, Thomas ;
Roemer, Katja ;
Petzoldt, Johannes ;
Wagner, Andreas ;
Pausch, Guntram .
PHYSICS IN MEDICINE AND BIOLOGY, 2014, 59 (18) :5399-5422
[9]  
J Applied Clin Med Phys, 2019, CHOI DEV GEANT4 BASE
[10]  
Kim Chanho, 2019, [Journal of Radiation Protection and Research, 방사선방어학회지], V44, P53, DOI 10.14407/jrpr.2019.44.2.53