Localization and quantification of glottal gaps on deep learning segmentation of vocal folds

被引:8
作者
Pedersen, Mette [1 ]
Larsen, Christian Frederik [2 ]
Madsen, Bertram [3 ]
Eeg, Martin [3 ]
机构
[1] Med Ctr, Ostergade 18, Copenhagen, Denmark
[2] Copenhagen Business Sch, Frederiksberg, Denmark
[3] ME TA, Copenhagen, Denmark
关键词
D O I
10.1038/s41598-023-27980-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The entire glottis has mostly been the focus in the tracking of the vocal folds, both manually and automatically. From a treatment point of view, the various regions of the glottis are of specific interest. The aim of the study was to test if it was possible to supplement an existing convolutional neural network (CNN) with post-network calculations for the localization and quantification of posterior glottal gaps during phonation, usable for vocal fold function analysis of e.g. laryngopharyngeal reflux findings. 30 subjects/videos with insufficient closure in the rear glottal area and 20 normal subjects/videos were selected from our database, recorded with a commercial high-speed video setup (HSV with 4000 frames per second), and segmented with an open-source CNN for validating voice function. We made post-network calculations to localize and quantify the 10% and 50% distance lines from the rear part of the glottis. The results showed a significant difference using the algorithm at the 10% line distance between the two groups of p < 0.0001 and no difference at 50%. These novel results show that it is possible to use post-network calculations on CNNs for the localization and quantification of posterior glottal gaps.
引用
收藏
页数:9
相关论文
共 29 条
[1]   An Open-Source Computer Vision Tool for Automated Vocal Fold Tracking From Videoendoscopy [J].
Adamian, Nat ;
Naunheim, Matthew R. ;
Jowett, Nate .
LARYNGOSCOPE, 2021, 131 (01) :E219-E225
[2]   Comparison of Convolutional Neural Network Models for Determination of Vocal Fold Normality in Laryngoscopic Images [J].
Cho, Won Ki ;
Choi, Seung-Ho .
JOURNAL OF VOICE, 2022, 36 (05) :590-598
[3]   A Contemporary Review of Machine Learning in Otolaryngology-Head and Neck Surgery [J].
Crowson, Matthew G. ;
Ranisau, Jonathan ;
Eskander, Antoine ;
Babier, Aaron ;
Xu, Bin ;
Kahmke, Russel R. ;
Chen, Joseph M. ;
Chan, Timothy C. Y. .
LARYNGOSCOPE, 2020, 130 (01) :45-51
[4]   Clinically applicable deep learning for diagnosis and referral in retinal disease [J].
De Fauw, Jeffrey ;
Ledsam, Joseph R. ;
Romera-Paredes, Bernardino ;
Nikolov, Stanislav ;
Tomasev, Nenad ;
Blackwell, Sam ;
Askham, Harry ;
Glorot, Xavier ;
O'Donoghue, Brendan ;
Visentin, Daniel ;
van den Driessche, George ;
Lakshminarayanan, Balaji ;
Meyer, Clemens ;
Mackinder, Faith ;
Bouton, Simon ;
Ayoub, Kareem ;
Chopra, Reena ;
King, Dominic ;
Karthikesalingam, Alan ;
Hughes, Cian O. ;
Raine, Rosalind ;
Hughes, Julian ;
Sim, Dawn A. ;
Egan, Catherine ;
Tufail, Adnan ;
Montgomery, Hugh ;
Hassabis, Demis ;
Rees, Geraint ;
Back, Trevor ;
Khaw, Peng T. ;
Suleyman, Mustafa ;
Cornebise, Julien ;
Keane, Pearse A. ;
Ronneberger, Olaf .
NATURE MEDICINE, 2018, 24 (09) :1342-+
[5]   Analysis of the Immediate Effects of the LaxVox Technique on Digital Videokymography Parameters in Adults With Voice Complaints [J].
do Nascimento, Ualisson Nogueira ;
Santos, Marco Aurelio Rocha ;
Gama, Ana Cristina Cortes .
JOURNAL OF VOICE, 2025, 39 (03) :736-743
[6]   Vocal fold vibration irregularities caused by different types of laryngeal asymmetry [J].
Eysholdt, U ;
Rosanowski, F ;
Hoppe, U .
EUROPEAN ARCHIVES OF OTO-RHINO-LARYNGOLOGY, 2003, 260 (08) :412-417
[7]  
Eysholdt U., 2020, LARYNGOSCOPY STROBOS, V1, P364
[8]   Fully automatic segmentation of glottis and vocal folds in endoscopic laryngeal high-speed videos using a deep Convolutional LSTM Network [J].
Fehling, Mona Kirstin ;
Grosch, Fabian ;
Schuster, Maria Elke ;
Schick, Bernhard ;
Lohscheller, Joerg .
PLOS ONE, 2020, 15 (02)
[9]   Low-light image enhancement of high-speed endoscopic videos using a convolutional neural network [J].
Gomez, Pablo ;
Semmler, Marion ;
Schuetzenberger, Anne ;
Bohr, Christopher ;
Doellinger, Michael .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2019, 57 (07) :1451-1463
[10]   Electroglottography - An Update [J].
Herbst, Christian T. .
JOURNAL OF VOICE, 2020, 34 (04) :503-526