Machine learning methods to estimate observational properties of galaxy clusters in large volume cosmological N-body simulations

被引:12
作者
de Andres, Daniel [1 ,2 ]
Yepes, Gustavo [1 ,2 ]
Sembolini, Federico [1 ,3 ]
Martinez-Munoz, Gonzalo [4 ]
Cui, Weiguang [1 ,2 ,5 ]
Robledo, Francisco [6 ,7 ]
Chuang, Chia-Hsun [8 ,9 ]
Rasia, Elena [10 ,11 ]
机构
[1] Univ Autonoma Madrid, Dept Fis Teor, M-8, E-28049 Madrid, Spain
[2] Univ Autonoma Madrid, Ctr Invest Avanzada Fis Fundamental CIAFF, E-28049 Madrid, Spain
[3] Equifax Lber Data & Analyt, Paseo La Castellana 259D, E-28046 Madrid, Spain
[4] Univ Autonoma Madrid, Comp Sci Dept, Escuela Politecn Super, E-28049 Madrid, Spain
[5] Univ Edinburgh, Inst Astron, Royal Observ, Edinburgh EH9 3HJ, Midlothian, Scotland
[6] Univ Pats Vasco, Dept Fundamentos Andlisis Econemko 2, Euskal Herriko Unibertsitatea, Barrio Sarriena S-N, E-48940 Leioa, Bizkaia, Spain
[7] Univ Pau & Pays Adour, Lab Math & Leurs Applicat, Ave Univ,BP 576, F-64012 Pau, France
[8] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA
[9] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, 452 Lomita Mall, Stanford, CA 94305 USA
[10] INAF Osservatorio Astron Trieste, Via Tiepolo 11, I-34123 Trieste, Italy
[11] Inst Fundamental Phys Universe, Via Beirut 2, I-34151 Trieste, Italy
关键词
methods: numerical; galaxies: clusters: general; galaxies: haloes; dark matter; large-scale structure of Universe; cosmology: theory; DARK-MATTER HALOES; LARGE-SCALE STRUCTURE; 3 HUNDRED PROJECT; HOT GAS; HYDRODYNAMICAL SIMULATIONS; MASS; EVOLUTION; SCATTER; MODEL; REDSHIFT;
D O I
10.1093/mnras/stac3009
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper, we study the applicability of a set of supervised machine learning (ML) models specifically trained to infer observed related properties of the baryonic component (stars and gas) from a set of features of dark matter (DM)-only cluster-size haloes. The training set is built from the three hundred project that consists of a series of zoomed hydrodynamical simulations of cluster-size regions extracted from the 1 Gpc volume MultiDark DM-only simulation (MDPL2). We use as target variables a set of baryonic properties for the intracluster gas and stars derived from the hydrodynamical simulations and correlate them with the properties of the DM haloes from the MDPL2 N-body simulation. The different ML models are trained from this data base and subsequently used to infer the same baryonic properties for the whole range of cluster-size haloes identified in the MDPL2. We also test the robustness of the predictions of the models against mass resolution of the DM haloes and conclude that their inferred baryonic properties are rather insensitive to their DM properties that are resolved with almost an order of magnitude smaller number of particles. We conclude that the ML models presented in this paper can be used as an accurate and computationally efficient tool for populating cluster-size haloes with observational related baryonic properties in large volume N-body simulations making them more valuable for comparison with full sky galaxy cluster surveys at different wavelengths. We make the best ML trained model publicly available.
引用
收藏
页码:111 / 129
页数:19
相关论文
共 90 条
  • [1] Planck 2015 results XIII. Cosmological parameters
    Ade, P. A. R.
    Aghanim, N.
    Arnaud, M.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Banday, A. J.
    Barreiro, R. B.
    Bartlett, J. G.
    Bartolo, N.
    Battaner, E.
    Battye, R.
    Benabed, K.
    Benoit, A.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Catalano, A.
    Challinor, A.
    Chamballu, A.
    Chary, R. -R.
    Chiang, H. C.
    Chluba, J.
    Christensen, P. R.
    Church, S.
    Clements, D. L.
    Colombi, S.
    Colombo, L. P. L.
    Combet, C.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davies, R. D.
    Davis, R. J.
    de Bernardis, P.
    [J]. ASTRONOMY & ASTROPHYSICS, 2016, 594
  • [2] Cosmological Parameters from Observations of Galaxy Clusters
    Allen, Steven W.
    Evrard, August E.
    Mantz, Adam B.
    [J]. ANNUAL REVIEW OF ASTRONOMY AND ASTROPHYSICS, VOL 49, 2011, 49 : 409 - 470
  • [3] The shape of dark matter haloes: dependence on mass, redshift, radius and formation
    Allgood, B
    Flores, RA
    Primack, JR
    Kravtsov, AV
    Wechsler, RH
    Faltenbacher, A
    Bullock, JS
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2006, 367 (04) : 1781 - 1796
  • [4] Permutation importance: a corrected feature importance measure
    Altmann, Andre
    Tolosi, Laura
    Sander, Oliver
    Lengauer, Thomas
    [J]. BIOINFORMATICS, 2010, 26 (10) : 1340 - 1347
  • [5] Scaling relations for galaxy clusters in the Millennium-XXL simulation
    Angulo, R. E.
    Springel, V.
    White, S. D. M.
    Jenkins, A.
    Baugh, C. M.
    Frenk, C. S.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 426 (03) : 2046 - 2062
  • [6] The BACCO simulation project: exploiting the full power of large-scale structure for cosmology
    Angulo, Raul E.
    Zennaro, Matteo
    Contreras, Sergio
    Arico, Giovanni
    Pellejero-Ibanez, Marcos
    Stucker, Jens
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 507 (04) : 5869 - 5881
  • [7] Cosmological N-body simulations with suppressed variance
    Angulo, Raul E.
    Pontzen, Andrew
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 462 (01) : L1 - L5
  • [8] The universal galaxy cluster pressure profile from a representative sample of nearby systems (REXCESS) and the YSZ-M500 relation
    Arnaud, M.
    Pratt, G. W.
    Piffaretti, R.
    Boehringer, H.
    Croston, J. H.
    Pointecouteau, E.
    [J]. ASTRONOMY & ASTROPHYSICS, 2010, 517
  • [9] The Hydrangea simulations: galaxy formation in and around massive clusters
    Bahe, Yannick M.
    Barnes, David J.
    Vecchia, Claudio Dalla
    Kay, Scott T.
    White, Simon D. M.
    McCarthy, Ian G.
    Schaye, Joop
    Bower, Richard G.
    Crain, Robert A.
    Theuns, Tom
    Jenkins, Adrian
    McGee, Sean L.
    Schaller, Matthieu
    Thomas, Peter A.
    Trayford, James W.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 470 (04) : 4186 - 4208
  • [10] The Cluster-EAGLE project: global properties of simulated clusters with resolved galaxies
    Barnes, David J.
    Kay, Scott T.
    Bahe, Yannick M.
    Dalla Vecchia, Claudio
    McCarthy, Ian G.
    Schaye, Joop
    Bower, Richard G.
    Jenkins, Adrian
    Thomas, Peter A.
    Schaller, Matthieu
    Crain, Robert A.
    Theuns, Tom
    White, Simon D. M.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 471 (01) : 1088 - 1106