Regularity of transition densities and ergodicity for affine jump-diffusions

被引:2
|
作者
Friesen, Martin [1 ]
Jin, Peng [2 ,3 ]
Kremer, Jonas [4 ]
Ruediger, Barbara [4 ]
机构
[1] Dublin City Univ, Sch Math Sci, Dublin, Ireland
[2] BNU HKBU United Int Coll, Div Sci & Technol, Zhuhai, Peoples R China
[3] Shantou Univ, Dept Math, Shantou, Guangdong, Peoples R China
[4] Univ Wuppertal, Sch Math & Nat Sci, Wuppertal, Germany
基金
中国国家自然科学基金;
关键词
affine processes; exponential ergodicity; strong Feller property; total variation norm; transition density; EXPONENTIAL ERGODICITY; MOMENTS; MODEL;
D O I
10.1002/mana.202000299
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper studies the transition density and exponential ergodicity for affine processes on the canonical state space R >= 0mxRn$\mathbb {R}_{\ge 0}<^>{m}\times \mathbb {R}<^>{n}$. Under a Hormander-type condition for diffusion components as well as a boundary nonattainment condition, we derive the existence and regularity of the transition densities and then prove the strong Feller property of the associated semigroup. Moreover, we also show that, under an additional subcriticality condition on the drift, the corresponding affine process is exponentially ergodic in the total variation distance.
引用
收藏
页码:1117 / 1134
页数:18
相关论文
共 50 条
  • [1] Transition probability densities for stable jump-diffusions
    不详
    SEMICLASSICAL ANALYSIS FOR DIFFUSIONS AND STOCHASTIC PROCESSES, 2000, 1724 : 146 - 190
  • [2] Asymptotic expansions of transition densities for hybrid jump-diffusions
    Liu Y.-J.
    Yin G.
    Acta Mathematicae Applicatae Sinica, 2004, 20 (1) : 1 - 18
  • [3] Dissecting skewness under affine jump-diffusions
    Zhen, Fang
    Zhang, Jin E.
    STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2020, 24 (04):
  • [4] Transform analysis and asset pricing for affine jump-diffusions
    Duffie, D
    Pan, J
    Singleton, K
    ECONOMETRICA, 2000, 68 (06) : 1343 - 1376
  • [5] Stdudy on the pricing of credit default swap with affine jump-diffusions processes
    Shi, Guoqing
    Liu, Chuanzhe
    Hou, Yuhua
    ISDA 2006: SIXTH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, VOL 1, 2006, : 1167 - 1172
  • [6] A PDE approach to jump-diffusions
    Carr, Peter
    Cousot, Laurent
    QUANTITATIVE FINANCE, 2011, 11 (01) : 33 - 52
  • [7] Nonlinear filtering for jump-diffusions
    Poklukar, Darja Rupnik
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 197 (02) : 558 - 567
  • [8] Estimating functions for jump-diffusions
    Jakobsen, Nina Munkholt
    Sorensen, Michael
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2019, 129 (09) : 3282 - 3318
  • [9] Stochastic Flows and Jump-Diffusions
    Siu, Tak Kuen
    QUANTITATIVE FINANCE, 2020, 20 (06) : 895 - 897
  • [10] Exact Simulation Problems for Jump-Diffusions
    Goncalves, Flavio B.
    Roberts, Gareth O.
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2014, 16 (04) : 907 - 930