Some Remarks on Inhomogeneous Diophantine Approximations

被引:1
作者
Moshchevitin, Nikolay [1 ]
机构
[1] Russ Akad der Wissensch, Steklow Inst fur Math, Gubkina 8, Moscow 119991, Russia
关键词
Inhomogeneous approximation; Kronecker theorem; Linear forms; Primitive points; AFFINE FORMS; SYSTEMS;
D O I
10.1007/s00013-022-01804-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss some easy statements dealing with linear inhomogeneous Diophantine approximation. Surprisingly, we did not find some of them in the literature. In particular, we prove a precise version of the Kronecker approximation theorem and a related result on coprime approximation.
引用
收藏
页码:159 / 169
页数:11
相关论文
共 18 条
  • [1] ON EXPONENTS OF HOMOGENEOUS AND INHOMOGENEOUS DIOPHANTINE APPROXIMATION
    Bugeaud, Yann
    Laurent, Michel
    [J]. MOSCOW MATHEMATICAL JOURNAL, 2005, 5 (04) : 747 - 766
  • [2] CASSELS J. W. S., 1997, An Introduction to the Geometry of Numbers
  • [3] Cassels J. W. S., 1957, INTRO DIOPHANTINE AP
  • [4] Chalk J., 1959, CANAD MATH B, V2, P91
  • [5] Chow S, 2020, ANN SCUOLA NORM-SCI, V21, P643
  • [6] Badly approximable systems of affine forms, fractals, and Schmidt games
    Einsiedler, Manfred
    Tseng, Jimmy
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2011, 660 : 83 - 97
  • [7] ON AN EFFECTIVE VARIATION OF KRONECKER'S APPROXIMATION THEOREM AVOIDING ALGEBRAIC SETS
    Fukshansky, Lenny
    Moshchevitin, Nikolay
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (10) : 4151 - 4163
  • [8] TRANSFERENCE THEOREMS FOR DIOPHANTINE APPROXIMATION WITH WEIGHTS
    German, Oleg N.
    [J]. MATHEMATIKA, 2020, 66 (02) : 325 - 342
  • [9] Kronecker's approximation theorem
    Gonek, Steven M.
    Montgomery, Hugh L.
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2016, 27 (02): : 506 - 523
  • [10] Hinqin A.., 1948, SEOI MATEMATIQESKA, V12, P113