On the derived length of the unit group of group algebras of groups with cyclic commutator subgroup

被引:0
|
作者
Figula, Agota [1 ]
Juhasz, Tibor [2 ]
机构
[1] Univ Debrecen, Inst Math, Debrecen, Hungary
[2] Eszterhazy Karoly Catholic Univ, Inst Math & Informat, Eger, Hungary
关键词
Derived length; group ring; group of units; SOLVABLE GROUP;
D O I
10.1080/00927872.2022.2107212
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F be a field of characteristic 2 and G a non-abelian group with cyclic commutator subgroup of order 2(n). In this paper, the derived length of the unit group of the group algebra FG is determined for the case when the nilpotency class of G is not n + 1. Under assumption that G is of class n + 1, a necessary and sufficient condition is provided for the derived length to take its highest possible value, n + 1.
引用
收藏
页码:633 / 647
页数:15
相关论文
共 50 条
  • [21] COHOMOLOGY OF THE COMMUTATOR SUBGROUP OF THE BRAID GROUP
    FRENKEL, EV
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1988, 22 (03) : 248 - 250
  • [22] Unit groups of group algebras of groups of order 18
    Sahai, Meena
    Ansari, Sheere Farhat
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (08) : 3273 - 3282
  • [23] Unit Groups of Group Algebras of Certain Dihedral Groups
    Sahai, M.
    Ansari, S. F.
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2020, 14 (03): : 419 - 436
  • [24] Unit groups of group algebras of some small groups
    Tang, Gaohua
    Wei, Yangjiang
    Li, Yuanlin
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2014, 64 (01) : 149 - 157
  • [25] Unit groups of group algebras of some small groups
    Gaohua Tang
    Yangjiang Wei
    Yuanlin Li
    Czechoslovak Mathematical Journal, 2014, 64 : 149 - 157
  • [26] Unit groups of group algebras of groups of order 20
    Ansari, Sheere Farhat
    Sahai, Meena
    QUAESTIONES MATHEMATICAE, 2021, 44 (04) : 503 - 511
  • [27] Conditions for groups whose group algebras have minimal Lie derived length
    Balogh, Zsolt
    Juhasz, Tibor
    ANNALES MATHEMATICAE ET INFORMATICAE, 2010, 37 : 13 - 20
  • [28] Finitep-groups with cyclic commutator subgroup and cyclic center
    A. A. Finogenov
    Mathematical Notes, 1998, 63 : 802 - 812
  • [29] GROUP ALGEBRAS WITH LOCALLY NILPOTENT UNIT GROUPS
    Ramezan-Nassab, M.
    COMMUNICATIONS IN ALGEBRA, 2016, 44 (02) : 604 - 612
  • [30] Unit groups of commutative modular group algebras
    Epitropov, Yordan
    Gradeva, Ivanka
    Mollov, Todor Zh.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024, 23 (09)