Relaxed inertial Tseng extragradient method for variational inequality and fixed point problems

被引:46
作者
Godwin, Emeka C. [1 ]
Alakoya, Timilehin O. [1 ]
Mewomo, Oluwatosin T. [1 ]
Yao, Jen-Chih [2 ]
机构
[1] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Durban, South Africa
[2] China Med Univ, Ctr Gen Educ, Taichung, Taiwan
基金
新加坡国家研究基金会;
关键词
Relaxed Tseng extragradient method; variational inequalities; monotone operator; self-adaptive step size; inertial method; quasi-pseudo-contraction; ADAPTIVE STEP-SIZE; PROJECTION ALGORITHM; STRONG-CONVERGENCE; EQUILIBRIUM; MAPPINGS; FAMILY;
D O I
10.1080/00036811.2022.2107913
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a new relaxed inertial Tseng extragradient method with self-adaptive step size for approximating common solutions of monotone variational inequality and fixed point problems of quasi-pseudo-contraction mappings in real Hilbert spaces. We prove a strong convergence result for the proposed algorithm without the knowledge of the Lipschitz constant of the cost operator. Moreover, we apply our results to approximate solution of convex minimization problem, and we present some numerical experiments to show the efficiency and applicability of our method in comparison with some existing methods in the literature. Our proposed method is easy to implement. It requires only one projection onto a constructible half-space.
引用
收藏
页码:4253 / 4278
页数:26
相关论文
共 47 条
[1]   ON SYSTEM OF SPLIT GENERALISED MIXED EQUILIBRIUM AND FIXED POINT PROBLEMS FOR MULTIVALUED MAPPINGS WITH NO PRIOR KNOWLEDGE OF OPERATOR NORM [J].
Alakoya, T. O. ;
Taiwo, A. ;
Mewomo, O. T. .
FIXED POINT THEORY, 2022, 23 (01) :45-48
[2]  
Alakoya T.O., 2021, Ann. Univ. Ferrara Sez. VII Sci. Mat, V67, P1, DOI [10.1007/s11565-020-00354-2, DOI 10.1007/S11565-020-00354-2]
[3]   AN INERTIAL ALGORITHM WITH A SELF-ADAPTIVE STEP SIZE FOR A SPLIT EQUILIBRIUM PROBLEM AND A FIXED POINT PROBLEM OF AN INFINITE FAMILY OF STRICT PSEUDO-CONTRACTIONS [J].
Alakoya, Timilehin Opeyemi ;
Owolabi, Abd-Semii Oluwatosin-Enitan ;
Mewomo, Oluwatosin Temitope .
JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2021, 5 (05) :803-829
[4]  
[Anonymous], 1963, Atti Accad. Naz. Lincei Cl Sci. Fis. Mat. Nat
[5]   Convergence rate of a relaxed inertial proximal algorithm for convex minimization [J].
Attouch, Hedy ;
Cabot, Alexandre .
OPTIMIZATION, 2020, 69 (06) :1281-1312
[6]  
Bauschke HH, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-9467-7
[7]   A weak-to-strong convergence principle for Fejer-monotone methods in Hilbert spaces [J].
Bauschke, HH ;
Combettes, PL .
MATHEMATICS OF OPERATIONS RESEARCH, 2001, 26 (02) :248-264
[8]   A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems [J].
Beck, Amir ;
Teboulle, Marc .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01) :183-202
[9]   On the convergence of inertial two-subgradient extragradient method for variational inequality problems [J].
Cao, Yu ;
Guo, Ke .
OPTIMIZATION, 2020, 69 (06) :1237-1253
[10]   Two inertial subgradient extragradient algorithms for variational inequalities with fixed-point constraints [J].
Ceng, L. C. ;
Petrusel, A. ;
Qin, X. ;
Yao, J. C. .
OPTIMIZATION, 2021, 70 (5-6) :1337-1358