A-Site Cation Influence on the Structural and Optical Evolution of Ultrathin Lead Halide Perovskite Nanoplatelets

被引:6
作者
Krajewska, Chantalle J. [1 ]
Kick, Matthias [1 ]
Kaplan, Alexander E. K. [1 ]
Berkinsky, David B. [1 ]
Zhu, Hua [1 ]
Sverko, Tara [1 ]
Van Voorhis, Troy [1 ]
Bawendi, Moungi G. [1 ]
机构
[1] MIT, Dept Chem, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
perovskites; nanoplatelet; quantum confinement; crystal structure; diffraction; excitons; THERMAL-EXPANSION; BR; NANOCRYSTALS; EXCITONS; CSPBX3; CL;
D O I
10.1021/acsnano.3c12286
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Imposing quantum confinement has the potential to significantly modulate both the structural and optical parameters of interest in many material systems. In this work, we investigate strongly confined ultrathin perovskite nanoplatelets APbBr(3). We compare the all-inorganic and hybrid compositions with the A-sites cesium and for mamidinium, respectively. Compared to each other and their bulk counterparts, the materials show significant differences in variable-temperature structural and optical evolution. We quantify and correlate structural asymmetry with the excitonic transition energy, spectral purity, and emission rate. Negative thermal expansion, structural and photoluminescence asymmetry, photoluminescence full width at half-maximum, and splitting between bright and dark excitonic levels are found to be reduced in the hybrid composition. This work provides composition- and structure-based mechanisms for engineering of the excitons in these materials.
引用
收藏
页码:8248 / 8258
页数:11
相关论文
共 50 条
  • [21] How Exciton-Phonon Coupling Impacts Photoluminescence in Halide Perovskite Nanoplatelets
    Gramlich, Moritz
    Lampe, Carola
    Drewniok, Jan
    Urban, Alexander S.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2021, 12 (46) : 11371 - 11377
  • [22] Grim JQ, 2014, NAT NANOTECHNOL, V9, P891, DOI [10.1038/NNANO.2014.213, 10.1038/nnano.2014.213]
  • [23] Revealing the Exciton Fine Structure in Lead Halide Perovskite Nanocrystals
    Hou, Lei
    Tamarat, Philippe
    Lounis, Brahim
    [J]. NANOMATERIALS, 2021, 11 (04)
  • [24] Ithurria S, 2011, NAT MATER, V10, P936, DOI [10.1038/nmat3145, 10.1038/NMAT3145]
  • [25] Hong-Ou-Mandel interference in colloidal CsPbBr3 perovskite nanocrystals
    Kaplan, Alexander E. K.
    Krajewska, Chantalle J.
    Proppe, Andrew H.
    Sun, Weiwei
    Sverko, Tara
    Berkinsky, David B.
    Utzat, Hendrik
    Bawendi, Moungi G.
    [J]. NATURE PHOTONICS, 2023, 17 (09) : 775 - +
  • [26] Controlled Assembly and Anomalous Thermal Expansion of Ultrathin Cesium Lead Bromide Nanoplatelets
    Krajewska, Chantalle J.
    Kaplan, Alexander E. K.
    Kick, Matthias
    Berkinsky, David B.
    Zhu, Hua
    Sverko, Tara
    Van Voorhis, Troy
    Bawendi, Moungi G.
    [J]. NANO LETTERS, 2023, 23 (06) : 2148 - 2157
  • [27] Colloidal CsPbX3 (X = CI, Br, I) Nanocrystals 2.0: Zwitterionic Capping Ligands for Improved Durability and Stability
    Krieg, Franziska
    Ochsenbein, Stefan T.
    Yakunin, Sergii
    ten Brinck, Stephanie
    Aellen, Philipp
    Suess, Adrian
    Clerc, Baptiste
    Guggisberg, Dominic
    Nazarenko, Olga
    Shynkarenko, Yevhen
    Kumar, Sudhir
    Shih, Chih-Jen
    Infante, Ivan
    Kovalenko, Maksym V.
    [J]. ACS ENERGY LETTERS, 2018, 3 (03): : 641 - 646
  • [28] Optimized opto-electronic and mechanical properties of orthorhombic methylamunium lead halides (MAPbX3) (X = I, Br and Cl) for photovoltaic applications
    Laamari, Mohammed Elmamoun
    Cheknane, Ali
    Benghia, Ali
    Hilal, Hikmat S.
    [J]. SOLAR ENERGY, 2019, 182 : 9 - 15
  • [29] 2D Behaviors of Excitons in Cesium Lead Halide Perovskite Nanoplatelets
    Li, Jing
    Luo, Laihao
    Huang, Hongwen
    Ma, Chao
    Ye, Zhizhen
    Zeng, Jie
    He, Haiping
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (06): : 1161 - 1168
  • [30] Temperature-Dependent Raman Studies of FAPbBr3 and MAPbBr3 Perovskites: Effect of Phase Transitions on Molecular Dynamics and Lattice Distortion
    Maczka, Miroslaw
    Ptak, Maciej
    [J]. SOLIDS, 2022, 3 (01): : 111 - 121