The integrate profiling of single-cell and spatial transcriptome RNA-seq reveals tumor heterogeneity, therapeutic targets, and prognostic subtypes in ccRCC

被引:1
|
作者
Zhang, Yanlong [1 ,2 ,3 ,4 ,5 ,6 ]
Huang, Xuefeng [1 ,3 ,4 ,5 ]
Yu, Minghang [1 ,3 ,4 ,5 ]
Zhang, Menghan [1 ]
Zhao, Li [2 ]
Yan, Yong [6 ]
Zhang, Liyun [2 ]
Wang, Xi [1 ,3 ,4 ,5 ]
机构
[1] Capital Med Univ, Beijing Ditan Hosp, Natl Key Lab Intelligent Tracking & Forecasting In, Beijing 100015, Peoples R China
[2] Shanxi Med Univ, Shanxi Bethune Hosp, Taiyuan, Shanxi, Peoples R China
[3] Capital Med Univ, Beijing Ditan Hosp, Inst Infect Dis, Beijing Key Lab Emerging Infect Dis, Beijing 100015, Peoples R China
[4] Beijing Inst Infect Dis, Beijing 100015, Peoples R China
[5] Capital Med Univ, Beijing Ditan Hosp, Natl Ctr Infect Dis, Beijing 100015, Peoples R China
[6] Capital Med Univ, Beijing Shijitan Hosp, Dept Urol, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
INTRATUMORAL HETEROGENEITY; PROTEIN; M2; EXPRESSION; PACKAGE; M1;
D O I
10.1038/s41417-024-00755-x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Clear-cell renal cell carcinoma (ccRCC) is the most common type of RCC; however, the intratumoral heterogeneity in ccRCC remains unclear. We first identified markers and biological features of each cell cluster using bioinformatics analysis based on single-cell and spatial transcriptome RNA-sequencing data. We found that gene copy number loss on chromosome 3p and amplification on chromosome 5q were common features in ccRCC cells. Meanwhile, NNMT and HILPDA, which are associated with the response to hypoxia and metabolism, are potential therapeutic targets for ccRCC. In addition, CD8+ exhausted T cells (LAG3+ HAVCR2+), CD8+ proliferated T cells (STMN+), and M2-like macrophages (CD68+ CD163+ APOC1+), which are closely associated with immunosuppression, played vital roles in ccRCC occurrence and development. These results were further verified by whole exome sequencing, cell line and xenograft experiments, and immunofluorescence staining. Finally, we divide patients with ccRCC into three subtypes using unsupervised cluster analysis. and generated a classifier to reproduce these subtypes using the eXtreme Gradient Boosting algorithm. Our classifier can help clinicians evaluate prognosis and design personalized treatment strategies for ccRCC. In summary, our work provides a new perspective for understanding tumor heterogeneity and will aid in the design of antitumor therapeutic strategies for ccRCC.
引用
收藏
页码:917 / 932
页数:16
相关论文
共 50 条
  • [1] Single-cell RNA-seq reveals dynamic transcriptome profiling in human early neural differentiation
    Shang, Zhouchun
    Chen, Dongsheng
    Wang, Quanlei
    Wang, Shengpeng
    Deng, Qiuting
    Wu, Liang
    Liu, Chuanyu
    Ding, Xiangning
    Wang, Shiyou
    Zhong, Jixing
    Zhang, Doudou
    Cai, Xiaodong
    Zhu, Shida
    Yang, Huanming
    Liu, Longqi
    Fink, J. Lynn
    Chen, Fang
    Liu, Xiaoqing
    Gao, Zhengliang
    Xu, Xun
    GIGASCIENCE, 2018, 7 (11): : 1 - 19
  • [2] Single-cell RNA-seq reveals intratumoral heterogeneity in osteosarcoma patients: A review
    Thomas, Dylan D.
    Lacinski, Ryan A.
    Lindsey, Brock A.
    JOURNAL OF BONE ONCOLOGY, 2023, 39
  • [3] Interspecies Single-Cell RNA-Seq Analysis Reveals the Novel Trajectory of Osteoclast Differentiation and Therapeutic Targets
    Omata, Yasunori
    Okada, Hiroyuki
    Uebe, Steffen
    Izawa, Naohiro
    Ekici, Arif B.
    Sarter, Kerstin
    Saito, Taku
    Schett, Georg
    Tanaka, Sakae
    Zaiss, Mario M.
    JBMR PLUS, 2022, 6 (07)
  • [4] Single-cell RNA-Seq reveals transcriptional heterogeneity and immune subtypes associated with disease activity in human myasthenia gravis
    Jin, Wanlin
    Yang, Qi
    Peng, Yuyao
    Yan, Chengkai
    Li, Yi
    Luo, Zhaohui
    Xiao, Bo
    Xu, Liqun
    Yang, Huan
    CELL DISCOVERY, 2021, 7 (01)
  • [5] Single-cell RNA-Seq reveals cell heterogeneity and hierarchy within mouse mammary epithelia
    Sun, Heng
    Miao, Zhengqiang
    Zhang, Xin
    Chan, Un In
    Su, Sek Man
    Guo, Sen
    Wong, Chris Koon Ho
    Xu, Xiaoling
    Deng, Chu-Xia
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2018, 293 (22) : 8315 - 8329
  • [6] Single-cell RNA-seq reveals the diversity of trophoblast subtypes and patterns of differentiation in the human placenta
    Liu, Yawei
    Fan, Xiaoying
    Wang, Rui
    Lu, Xiaoyin
    Dang, Yan-Li
    Wang, Huiying
    Lin, Hai-Yan
    Zhu, Cheng
    Ge, Hao
    Cross, James C.
    Wang, Hongmei
    CELL RESEARCH, 2018, 28 (08) : 819 - 832
  • [7] Probabilistic cell-type assignment of single-cell RNA-seq for tumor microenvironment profiling
    Zhang, Allen W.
    O'Flanagan, Ciara
    Chavez, Elizabeth A.
    Lim, Jamie L. P.
    Ceglia, Nicholas
    McPherson, Andrew
    Wiens, Matt
    Walters, Pascale
    Chan, Tim
    Hewitson, Brittany
    Lai, Daniel
    Mottok, Anja
    Sarkozy, Clementine
    Chong, Lauren
    Aoki, Tomohiro
    Wang, Xuehai
    Weng, Andrew P.
    McAlpine, Jessica N.
    Aparicio, Samuel
    Steidl, Christian
    Campbell, Kieran R.
    Shah, Sohrab P.
    NATURE METHODS, 2019, 16 (10) : 1007 - +
  • [8] Single-cell RNA-seq analysis reveals compartment-specific heterogeneity and plasticity of microglia
    Zheng, Junying
    Ru, Wenjuan
    Adolacion, Jay R.
    Spurgat, Michael S.
    Liu, Xin
    Yuan, Subo
    Liang, Rommel X.
    Dong, Jianli
    Potter, Andrew S.
    Potter, S. Steven
    Chen, Ken
    Chen, Rui
    Varadarajan, Navin
    Tang, Shao-Jun
    ISCIENCE, 2021, 24 (03)
  • [9] Single-cell RNA-Seq and bulk RNA-Seq reveal reliable diagnostic and prognostic biomarkers for CRC
    Zhang, Xing
    Yang, Longkun
    Deng, Ying
    Huang, Zhicong
    Huang, Hao
    Wu, Yuying
    He, Baochang
    Hu, Fulan
    JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY, 2023, 149 (12) : 9805 - 9821
  • [10] Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma
    Patel, Anoop P.
    Tirosh, Itay
    Trombetta, John J.
    Shalek, Alex K.
    Gillespie, Shawn M.
    Wakimoto, Hiroaki
    Cahill, Daniel P.
    Nahed, Brian V.
    Curry, William T.
    Martuza, Robert L.
    Louis, David N.
    Rozenblatt-Rosen, Orit
    Suva, Mario L.
    Regev, Aviv
    Bernstein, Bradley E.
    SCIENCE, 2014, 344 (6190) : 1396 - 1401