Evaluation of Cumulus and Microphysical Parameterization Schemes of the WRF Model for Precipitation Prediction in the Paraíba do Sul River Basin, Southeastern Brazil

被引:3
作者
de Souza, Lucio Silva [1 ]
da Silva, Mauricio Soares [2 ]
de Almeida, Vinicius Albuquerque [2 ]
Moraes, Nilton Oliveira [1 ]
de Souza, Enio Pereira [3 ]
Senna, Monica Carneiro Alves [4 ]
Franca, Gutemberg Borges [2 ]
Frota, Mauricio Nogueira [5 ]
de Almeida, Manoel Valdonel [2 ]
Viana, Lude Quieto [6 ]
机构
[1] Univ Estado Rio De Janeiro, FAOC Sch Oceanog, Dept Phys Oceanog & Meteorol, UERJ, Rio De Janeiro, RJ, Brazil
[2] Univ Fed Rio de Janeiro, Dept Meteorol IGEO CCMN UFRJ, Rio De Janeiro, RJ, Brazil
[3] Fed Univ Campina Grande UFCG, Dept Atmospher Sci, Campina Grande, PB, Brazil
[4] Fed Fluminense Univ UFF, Niteroi, RJ, Brazil
[5] Pontif Catholic Univ Rio de Janeiro PosMQI PUC Rio, Rio De Janeiro, RJ, Brazil
[6] LIGHT Energia SA, Rio De Janeiro, RJ, Brazil
关键词
Cumulus and microphysics WRF; Precipitation forecast; Statistic verification; Electricity renewable resources; CLOUD MICROPHYSICS; EXTREME PRECIPITATION; WEATHER RESEARCH; SOUTH-AMERICA; EVENTS; VERIFICATION; FORECASTS; TRENDS;
D O I
10.1007/s00024-023-03419-3
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Three cumulus and five microphysics parameterization schemes of the Weather Research and Forecasting model (WRF) are the basis for simulating ten specific meteorological events of the Paraiba do Sul River Basin (PSRB) in Southeast Brazil. The cases studied are frontal wave systems, thermodynamic instability, and the South Atlantic Convergence Zone (SACZ). Each parameterization combination generated 15 simulations for each event, resulting in 150 tests. The primary domain has a horizontal resolution of 8.0 km and the nested 2.6 km resolution. Three analysis tools underlie the study: (i) punctual verification of the first 24 h of precipitation forecast, using the Taylor diagram; (ii) verification of the prediction of precipitation using categorical binary variable and (iii) the Model ' s ability to reproduce patterns of the spatial distribution of precipitation. The Taylor diagram suggests that the combination of the Morrison Double moment and Multiscale Kain-Fritsch schemes produce the best results. The categorical verification indicates that, for dynamic/convective events, the Morrison Double moment and Multiscale Kain-Fritsch and WRF Double Moment 6-class sets showed the best indices. Some configurations presented reliable results for exclusively convective events, and WRF Single-moment 6-class and Grell-Freitas Ensemble is the best combination. The Morrison Double moment and Multiscale Kain-Fritsch parameterizations yielded the best performance for the spatial distribution. Overall, the schemes tested perform better for the upstream region, i.e., the area of greater water uptake for the basin.
引用
收藏
页码:679 / 700
页数:22
相关论文
共 62 条
[11]  
Carvalho LMV, 2002, J CLIMATE, V15, P2377, DOI 10.1175/1520-0442(2002)015<2377:EPEISS>2.0.CO
[12]  
2
[13]  
Chen M., 2020, APPL WRF GET BETTER
[14]   Precipitation diagnostics of an exceptionally dry event in So Paulo, Brazil [J].
Coelho, Caio A. S. ;
Cardoso, Denis H. F. ;
Firpo, Mari A. F. .
THEORETICAL AND APPLIED CLIMATOLOGY, 2016, 125 (3-4) :769-784
[15]   Extreme rainfall event in the Northeast coast of Brazil: a numerical sensitivity study [J].
Comin, Alcimoni Nelci ;
Justino, Flavio ;
Pezzi, Luciano ;
de Sousa Gurjao, Carlos Diego ;
Shumacher, Vanucia ;
Fernandez, Alfonso ;
Sutil, Ueslei Adriano .
METEOROLOGY AND ATMOSPHERIC PHYSICS, 2021, 133 (02) :141-162
[16]   Forecast of convective events via hybrid model: WRF and machine learning algorithms [J].
da Silva, Yasmin Uchoa ;
Franca, Gutemberg Borges ;
Ruivo, Heloisa Musetti ;
de Campos Velho, Haroldo Fraga .
APPLIED COMPUTING AND GEOSCIENCES, 2022, 16
[17]  
Dantas VD, 2019, Revista Brasileira de Geografia Física, V12, P754, DOI [10.26848/rbgf.v12.3.p754-767, 10.26848/rbgf.v12.3.p754-767, DOI 10.26848/RBGF.V12.3.P754-767]
[18]   Object-based verification of precipitation forecasts. Part I: Methodology and application to mesoscale rain areas [J].
Davis, Christopher ;
Brown, Barbara ;
Bullock, Randy .
MONTHLY WEATHER REVIEW, 2006, 134 (07) :1772-1784
[19]   Severe Convective Weather Forecast Using Machine Learning Models [J].
de Castro, Jimmy Nogueira ;
Franca, Gutemberg Borges ;
de Almeida, Vinicius Albuquerque ;
de Almeida, Valdonel Manoel .
PURE AND APPLIED GEOPHYSICS, 2022, 179 (08) :2945-2955
[20]  
Dereczynski Claudine Pereira, 2009, Rev. bras. meteorol., V24, P24, DOI 10.1590/S0102-77862009000100003