Non-Markovian Stochastic Gross-Pitaevskii Equation for the Exciton-Polariton Bose-Einstein Condensate

被引:1
|
作者
Alliluev, Alexey D. [1 ]
Makarov, Denis V. [1 ]
Asriyan, Norayr A. [2 ,5 ]
Elistratov, Andrei A. [2 ]
Lozovik, Yurii E. [3 ,4 ]
机构
[1] Russian Acad Sci, V I Ilichev Pacific Oceanol Inst, Far Eastern Branch, Vladivostok 690041, Russia
[2] NL Dukhov Res Inst Automat VNIIA, Moscow 127030, Russia
[3] Inst Spect RAS, Troitsk 108840, Russia
[4] Natl Res Univ, Higher Sch Econ, MIEM, Moscow 101000, Russia
[5] Inst Microelect Technol RAS, Chernogolovka 142432, Russia
基金
俄罗斯科学基金会;
关键词
Non-Markovian dynamics; Exciton-polaritons; Bose-Einstein condensation; Optical coherence;
D O I
10.1007/s10909-023-03027-4
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper, a non-Markovian version of the Gross-Pitaevskii equation is proposed to describe the condensate formation in an exciton-polariton system subject to incoherent pumping. By introducing spatially delta-correlated noise terms, we observe a transition from a spatially ordered phase to a disordered one with simultaneous density reduction as the temperature increases. Above the transition temperature, the uniform condensate breaks up into multiple irregularly located separate dense spots. Using the Gabor transform, we demonstrate condensate decoherence with increasing temperature, which is accompanied by the transition from narrow-band to broadband spectral density.
引用
收藏
页码:331 / 343
页数:13
相关论文
共 20 条
  • [1] Non-Markovian Stochastic Gross–Pitaevskii Equation for the Exciton–Polariton Bose–Einstein Condensate
    Alexey D. Alliluev
    Denis V. Makarov
    Norayr A. Asriyan
    Andrei A. Elistratov
    Yurii E. Lozovik
    Journal of Low Temperature Physics, 2024, 214 : 331 - 343
  • [2] Evolution of Bose-Einstein condensate systems beyond the Gross-Pitaevskii equation
    Lyanda-Geller, Yuli
    FRONTIERS IN PHYSICS, 2023, 11
  • [3] Exciton-Polariton Bose-Einstein Condensates
    Deveaud, Benoit
    ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 6, 2015, 6 : 155 - 175
  • [4] Non-Markovian effects in dynamics of exciton-polariton Bose condensates
    Makarov, D., V
    Elistratov, A. A.
    Lozovik, Yu E.
    PHYSICS LETTERS A, 2020, 384 (36)
  • [5] Stochastic polarization formation in exciton-polariton Bose-Einstein condensates
    Read, D.
    Liew, T. C. H.
    Rubo, Yuri G.
    Kavokin, A. V.
    PHYSICAL REVIEW B, 2009, 80 (19)
  • [6] PROJECTED GROSS-PITAEVSKII EQUATION FOR RING-SHAPED BOSE-EINSTEIN CONDENSATES
    Prikhodko, O. O.
    Bidasyuk, Y. M.
    UKRAINIAN JOURNAL OF PHYSICS, 2021, 66 (03): : 198 - 205
  • [7] A quasi-local Gross-Pitaevskii equation for attractive Bose-Einstein condensates
    García-Ripoll, JJ
    Konotop, VV
    Malomed, B
    Pérez-García, VM
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2003, 62 (1-2) : 21 - 30
  • [8] Perturbation theory for the Gross-Pitaevskii equation modeling stationary Bose-Einstein condensates
    Abulseoud, Ashraf A.
    Alsayad, Hala H.
    El-Sherbini, Tharwat M.
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 463
  • [9] Exciton-polariton Bose-Einstein condensation: advances and issues
    Richard, Maxime
    Kasprzak, Jacek
    Baas, Augustin
    Kundermann, Stefan
    Lagoudakis, Konstantinos G.
    Wouters, Michiel
    Carusotto, Iacopo
    Andre, Regis
    Deveaud-Pledran, Benoit
    Dang, Le Si
    INTERNATIONAL JOURNAL OF NANOTECHNOLOGY, 2010, 7 (4-8) : 668 - 685
  • [10] Large amplitude spatial fluctuations in the boundary region of the Bose-Einstein condensate in the Gross-Pitaevskii regime
    Tuszynski, JA
    Middleton, J
    Portet, S
    Dixon, JM
    Bang, O
    Christiansen, PL
    Salerno, M
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 325 (3-4) : 455 - 476