Techno-economic comparison of ammonia production processes under various carbon tax scenarios for the economic transition from grey to blue ammonia

被引:15
|
作者
Oh, Sieun [1 ]
Mun, Haneul [1 ]
Park, Jinwoo [2 ]
Lee, Inkyu [1 ]
机构
[1] Pusan Natl Univ, Sch Chem Engn, 2 Busandaehak ro,63beon Gil, Busan 46241, South Korea
[2] Dongguk Univ, Dept Chem & Biochem Engn, 30 Pildong Ro,1 Gil, Seoul 04620, South Korea
基金
新加坡国家研究基金会;
关键词
Process design; Grey ammonia; Blue ammonia; Carbon tax scenario; Techno-economic analysis; CRYOGENIC AIR SEPARATION; CO2; CAPTURE; NATURAL-GAS; HYDROGEN-PRODUCTION; PROCESS DESIGN; ENERGY; INTEGRATION; OPTIMIZATION; SOLVENT; PLANTS;
D O I
10.1016/j.jclepro.2023.139909
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Ammonia synthesis is a carbon-intensive process, with significant volumes of carbon dioxide produced during the preliminary production of hydrogen from a fossil fuel feedstock. Since carbon emissions vary significantly depending on the hydrogen production method, the impact of carbon capture and storage (CCS) implementation on the overall economic performance of the ammonia synthesis process differs. Therefore, it is crucial to (1) integrate cost-effective CCS into various ammonia synthesis processes and (2) conduct a comprehensive comparison of grey and blue ammonia systems together, considering the economic costs of the carbon emissions. This study aims to investigate the economic feasibility of large-scale ammonia processes under various carbon tax scenarios and suggest carbon-efficient options for the ammonia industry. Three ammonia synthesis processes are designed that differ in their hydrogen production method - steam methane reforming (SMR), autothermal reforming (ATR), and hybrid SMR-ATR - and these three options also have grey ammonia and blue ammonia production versions. The grey ammonia production systems do not include a carbon capture procedure, while the blue ammonia systems ensure that the CO2 emissions are below 0.065 t CO2/t NH3. In the present study, both the grey and blue versions of the three ammonia production processes are subjected to techno-economic evaluation under various carbon tax scenarios. For the grey ammonia systems, economic feasibility varies depending on the carbon tax scenario under consideration. Grey ATR becomes the most cost-effective option within a carbon tax of 95 $/ton to 115 $/ton. In contrast, the economic viability of the blue ammonia systems is unaffected by the carbon tax policy environment. In particular, blue ATR exhibits 6% and 14% lower levelized cost of ammonia (LCOA) compared to the blue SMR and blue Hybrid SMR-ATR, respectively. Overall, the results indicate that, below a carbon tax threshold of 62 $/ton, the SMR process without carbon capture is economically favorable. However, for carbon tax above 62 $/ton, the ATR process with carbon capture has greater economic feasibility than other options. A minimum carbon tax of 62 $/ton is required to promote the transition to blue ammonia. These findings thus provide valuable insight into the establishment of effective carbon regulations in response to the global demand to tackle the climate crisis.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Techno-economic comparison of green ammonia production processes
    Zhang, Hanfei
    Wang, Ligang
    Van Herle, Jan
    Marechal, Francois
    Desideri, Umberto
    APPLIED ENERGY, 2020, 259
  • [2] Techno-economic analysis of green and blue hybrid processes for ammonia production
    Park, Sungjun
    Shin, Yonghyeon
    Jeong, Eunha
    Han, Myungwan
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2023, 40 (11) : 2657 - 2670
  • [3] Techno-economic analysis of green and blue hybrid processes for ammonia production
    Sungjun Park
    Yonghyeon Shin
    Eunha Jeong
    Myungwan Han
    Korean Journal of Chemical Engineering, 2023, 40 : 2657 - 2670
  • [4] Techno-Economic Assessment of Nonfossil Ammonia Production
    Tuna, Per
    Hulteberg, Christian
    Ahlgren, Serina
    ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 2014, 33 (04) : 1290 - 1297
  • [5] Blue and green ammonia production: A techno-economic and life cycle assessment perspective
    Mayer, Patricia
    Ramirez, Adrian
    Pezzella, Giuseppe
    Winter, Benedikt
    Sarathy, S. Mani
    Gascon, Jorge
    Bardow, Andre
    ISCIENCE, 2023, 26 (08)
  • [6] A comparative techno-economic assessment of blue, green, and hybrid ammonia production in the United States
    Mersch, Matthias
    Sunny, Nixon
    Dejan, Roghayeh
    Ku, Anthony Y.
    Wilson, Gregory
    O'Reilly, Sean
    Soloveichik, Grigorii
    Wyatt, John
    Mac Dowell, Niall
    SUSTAINABLE ENERGY & FUELS, 2024, 8 (07): : 1495 - 1508
  • [7] Techno-Economic Analysis of a Hybrid Process for Propylene and Ammonia Production
    Qin, Jian
    Pei, Chunlei
    Zhao, Chengjie
    Lu, Zhenpu
    Sun, Guodong
    Gong, Jinlong
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2022, 10 (21) : 6999 - 7009
  • [8] Techno-economic assessment of blue and green ammonia as energy carriers in a low-carbon future
    Arnaiz del Pozo, Carlos
    Cloete, Schalk
    ENERGY CONVERSION AND MANAGEMENT, 2022, 255
  • [9] Techno-economic and environmental assessment of hydrogen production through ammonia decomposition
    Devkota, Sijan
    Cha, Jin-Young
    Shin, Beom-Ju
    Mun, Ji-Hun
    Yoon, Hyung Chul
    Mazari, Shaukat Ali
    Moon, Jong-Ho
    APPLIED ENERGY, 2024, 358
  • [10] Techno-economic analysis of ammonia production via integrated biomass gasification
    Andersson, Jim
    Lundgren, Joakim
    APPLIED ENERGY, 2014, 130 : 484 - 490