Jet spaces over Carnot groups

被引:0
作者
Golo, Sebastiano Nicolussi [1 ]
Warhurst, Benjamin [2 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, Jyvaskyla 40014, Finland
[2] Univ Warsaw, Inst Math, Ul Banacha 2, PL-02097 Warsaw, Poland
基金
芬兰科学院;
关键词
Jet spaces; stratified Lie groups; Carnot groups; embedding;
D O I
10.4171/RMI/1439
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Jet spaces over Rn have been shown to have a canonical structure of strati-fied Lie groups (also known as Carnot groups). We construct jet spaces over stratified Lie groups adapted to horizontal differentiation and show that these jet spaces are themselves stratified Lie groups. Furthermore, we show that these jet spaces support a prolongation theory for contact maps, and in particular, a Backlund type theorem holds. A byproduct of these results is an embedding theorem that shows that every stratified Lie group of step s + 1 can be embedded in a jet space over a stratified Lie group of step s.
引用
收藏
页码:2289 / 2330
页数:42
相关论文
共 18 条
  • [1] Polynomial and horizontally polynomial functions on Lie groups
    Antonelli, Gioacchino
    Le Donne, Enrico
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2022, 201 (05) : 2063 - 2100
  • [2] Bonfiglioli A, 2007, SPRINGER MONOGR MATH, P3
  • [3] Bourbaki N, 1962, Actualites Sci. Indust., V1285
  • [4] Bravo-Doddoli A., 2023, Pacific J. Math, V322, P11
  • [5] Geodesics in Jet Space
    Bravo-Doddoli, Alejandro
    Montgomery, Richard
    [J]. REGULAR & CHAOTIC DYNAMICS, 2022, 27 (02) : 151 - 182
  • [6] Folland G.B., 1982, HARDY SPACES HOMOGEN
  • [7] BILIPSCHITZ EMBEDDINGS OF SPHERES INTO JET SPACE CARNOT GROUPS NOT ADMITTING LIPSCHITZ EXTENSIONS
    Jung, Derek
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2019, 44 : 261 - 280
  • [8] Montgomery R., 2002, MATH SURVEYS MONOGRA, V91
  • [9] Morimoto T., 2002, Adv. Stud. Pure Math, V37, P205, DOI [10.2969/aspm/03710205, DOI 10.2969/ASPM/03710205]
  • [10] Neusser K., 2010, Ph.D. thesis