PEN-DS: progressive enhancement network based on detail supplementation for low-light image enhancement

被引:0
|
作者
Yang, Yong [1 ]
Xu, Wenzhi [2 ]
Huang, Shuying [3 ]
Wan, Weiguo [4 ]
机构
[1] Tiangong Univ, Sch Comp Sci & Technol, Tianjin 300387, Peoples R China
[2] Jiangxi Univ Finance & Econ, Sch Informat Technol, Nanchang 330032, Peoples R China
[3] Tiangong Univ, Sch Software, Tianjin 300387, Peoples R China
[4] Jiangxi Univ Finance & Econ, Sch Software & Internet Things Engn, Nanchang 330032, Peoples R China
基金
中国国家自然科学基金;
关键词
Low-light image enhancement; Detail supplementation; Image preprocessing module; Progressive image enhancement module; RETINEX; REPRESENTATION; GAP;
D O I
10.1007/s13042-023-02036-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Images captured in low-light environments suffer from severe degradation, which can be unfavorable for human observation and subsequent computer vision tasks. Although many enhancement methods based on deep learning have been proposed, the obtained enhancement images still suffer from drawbacks such as color distortion, noise, and blur. To solve these problems, we propose a progressive enhancement network based on detail supplementation (PEN-DS), which is implemented by building two modules: an image preprocessing module (IPM) and a progressive image enhancement module (PIEM). The IPM can obtain low-light images and low-detail maps at different scales by building an image pyramid structure. PIEM can enhance images at different scales progressively based on detail supplementation and luminance enhancement. In addition, to better train the network, the proposed method employs a multi-supervised joint loss function for the enhanced images of different scales. Experimental results show that the proposed method outperforms state-of-the-art approaches in terms of visual observation and objective evaluation.
引用
收藏
页码:2383 / 2398
页数:16
相关论文
共 50 条
  • [21] Invertible network for unpaired low-light image enhancement
    Jize Zhang
    Haolin Wang
    Xiaohe Wu
    Wangmeng Zuo
    The Visual Computer, 2024, 40 : 109 - 120
  • [22] Generative adversarial network for low-light image enhancement
    Li, Fei
    Zheng, Jiangbin
    Zhang, Yuan-fang
    IET IMAGE PROCESSING, 2021, 15 (07) : 1542 - 1552
  • [23] A Pipeline Neural Network for Low-Light Image Enhancement
    Guo, Yanhui
    Ke, Xue
    Ma, Jie
    Zhang, Jun
    IEEE ACCESS, 2019, 7 : 13737 - 13744
  • [24] Weight Uncertainty Network for Low-Light Image Enhancement
    Jin, Yutao
    Sun, Yue
    Chen, Xiaoyan
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT VIII, ICIC 2024, 2024, 14869 : 106 - 117
  • [25] Exposure difference network for low-light image enhancement
    Jiang, Shengqin
    Mei, Yongyue
    Wang, Peng
    Liu, Qingshan
    PATTERN RECOGNITION, 2024, 156
  • [26] Hierarchical guided network for low-light image enhancement
    Feng, Xiaomei
    Li, Jinjiang
    Fan, Hui
    IET IMAGE PROCESSING, 2021, 15 (13) : 3254 - 3266
  • [27] Low-Light Image Enhancement Based on Deep Convolutional Neural Network
    Ma Hongqiang
    Ma Shiping
    Xu Yuelei
    Zhu Mingming
    ACTA OPTICA SINICA, 2019, 39 (02)
  • [28] Deep Lightening Network for Low-light Image Enhancement
    Wang, Li-Wen
    Liu, Zhi-Song
    Siu, Wan-Chi
    Lun, Daniel Pak-Kong
    2020 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2020,
  • [29] Invertible network for unpaired low-light image enhancement
    Zhang, Jize
    Wang, Haolin
    Wu, Xiaohe
    Zuo, Wangmeng
    VISUAL COMPUTER, 2024, 40 (01): : 109 - 120
  • [30] Retinex low-light image enhancement network based on attention mechanism
    Chen, Xinyu
    Li, Jinjiang
    Hua, Zhen
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (03) : 4235 - 4255