Isoliquiritin treatment of osteoporosis by promoting osteogenic differentiation and autophagy of bone marrow mesenchymal stem cells

被引:3
|
作者
Su, Zhikang [1 ,2 ]
Chen, Ding [1 ,2 ]
Huang, Jiangyon [1 ,2 ]
Liang, Zitian [2 ,3 ]
Ren, Wen [1 ,2 ]
Zhang, Zeyu [2 ,3 ]
Jiang, Qianzhou [2 ,3 ,4 ]
Luo, Tao [1 ,2 ,4 ]
Guo, Lvhua [1 ,2 ,4 ]
机构
[1] Guangzhou Med Univ, Sch & Hosp Stomatol, Guangdong Engn Res Ctr Oral Restorat & Reconstruct, Dept Prosthodont, Guangzhou, Guangdong, Peoples R China
[2] Guangzhou Med Univ, Guangzhou Key Lab Basic & Appl Res Oral Regenerat, Guangzhou, Guangdong, Peoples R China
[3] Guangzhou Med Univ, Sch & Hosp Stomatol, Guangdong Engn Res Ctr Oral Restorat & Reconstruct, Guangzhou, Guangdong, Peoples R China
[4] Guangzhou Med Univ, Sch & Hosp Stomatol, Guangzhou 510000, Guangdong, Peoples R China
关键词
autophagy; bone marrow mesenchymal stem cells; isoliquiritin; MAPK; osteoporosis;
D O I
10.1002/ptr.8032
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Osteoporosis is a chronic progressive bone disease characterized by the decreased osteogenic ability of osteoblasts coupled with increased osteoclast activity. Natural products showing promising therapeutic potential for postmenopausal osteoporosis remain underexplored. In this study, we aimed to analyze the therapeutic effects of isoliquiritin (ISL) on osteoporosis in mice and its possible mechanism of action. An ovariectomy-induced osteoporosis mouse model and bone marrow mesenchymal stem cells (BMSCs) were used to analyze the effects of ISL on bone regeneration in vivo and in vitro, respectively. Mitogen-activated protein kinase (MAPK) and autophagy inhibitors were used, to investigate whether the MAPK signaling pathway and autophagy affect the osteogenic differentiation of BMSCs. ISL significantly improved bone formation and reduced bone resorption in mouse femurs without inducing any detectable toxicity in critical organs such as the liver, kidney, brain, heart, and spleen. In vitro experiments showed that ISL enhanced the proliferation and osteogenic differentiation of BMSCs and that its osteogenic effect was attenuated by p38/extracellular regulated protein kinase (ERK) and autophagy inhibitors. Further studies showed that the inhibition of phosphorylated p38/ERK blocked ISL autophagy in BMSCs. ISL promoted the osteogenic differentiation of BMSCs through the p38/ERK-autophagy pathway and was therapeutically effective in treating osteoporosis in ovariectomized mice without any observed toxicity to vital organs. These results strongly suggest the promising potential of ISL as a safe and efficacious candidate drug for the treatment of osteoporosis.
引用
收藏
页码:214 / 230
页数:17
相关论文
共 50 条
  • [31] Therapeutic potential of Chinese medicinal herbs stimulating osteogenic differentiation of bone marrow-derived mesenchymal stem cells in osteoporosis
    Wang, Hui
    Shan, Kai
    Li, Yan
    Wu, Sinuo
    Zhou, Chunman
    Tao, Shan
    Wang, Meijuan
    Kang, Xiaochun
    Zhou, Liang
    Lyu, Zhongxi
    Li, Ningcen
    FRONTIERS IN PHARMACOLOGY, 2024, 15
  • [32] Extracellular and intracellular effects of bioactive glass nanoparticles on osteogenic differentiation of bone marrow mesenchymal stem cells and bone regeneration in zebrafish osteoporosis model
    Meng, Li
    Zhao, Panpan
    Jiang, Yucheng
    You, Jiawen
    Xu, Zhiyan
    Yu, Kui
    Boccaccini, Aldo R.
    Ma, Junqing
    Zheng, Kai
    ACTA BIOMATERIALIA, 2024, 174 : 412 - 427
  • [33] Role of autophagy and mTOR signaling in neural differentiation of bone marrow mesenchymal stem cells
    Li, Yanfei
    Wang, Cuiqin
    Zhang, Guangyu
    Wang, Xiaohan
    Duan, Ranran
    Gao, Huili
    Peng, Tao
    Teng, Junfang
    Jia, Yanjie
    CELL BIOLOGY INTERNATIONAL, 2014, 38 (11) : 1337 - 1343
  • [34] The BMP signaling pathway enhances the osteoblastic differentiation of bone marrow mesenchymal stem cells in rats with osteoporosis
    Zhao, Bin
    Xing, Gengyan
    Wang, Aiyuan
    JOURNAL OF ORTHOPAEDIC SURGERY AND RESEARCH, 2019, 14 (01)
  • [35] The BMP signaling pathway enhances the osteoblastic differentiation of bone marrow mesenchymal stem cells in rats with osteoporosis
    Bin Zhao
    Gengyan Xing
    Aiyuan Wang
    Journal of Orthopaedic Surgery and Research, 14
  • [36] Salivary nitrate prevents osteoporosis via regulating bone marrow mesenchymal stem cells proliferation and differentiation
    Li, Xiaoyu
    Hu, Lei
    Wang, Xue
    Liu, Huan
    Zhang, Chunmei
    Wang, Jinsong
    Wang, Xiaogang
    Wang, Songlin
    JOURNAL OF ORTHOPAEDIC TRANSLATION, 2024, 45 : 188 - 196
  • [37] USP2-induced upregulation of LEF1 through deubiquitination relieves osteoporosis development by promoting the osteogenic differentiation of bone marrow mesenchymal stem cells
    Zhihong Zhang
    Jie Cao
    Hanwen Xing
    Jing Liu
    Linshuo Li
    Yue Zhang
    Journal of Orthopaedic Surgery and Research, 20 (1)
  • [38] Bioactive carbon dots direct the osteogenic differentiation of human bone marrow mesenchymal stem cells
    Han, Yu
    Zhang, Fan
    Zhang, Jing
    Shao, Dan
    Wang, Yanan
    Li, Shuang
    Lv, Shuang
    Chi, Guangfan
    Zhang, Ming
    Chen, Li
    Liu, Jianguo
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2019, 179 : 1 - 8
  • [39] Effect of RNA-binding proteins on osteogenic differentiation of bone marrow mesenchymal stem cells
    Bin Luo
    Qingsong Jiang
    Molecular and Cellular Biochemistry, 2024, 479 : 383 - 392
  • [40] FOXO3 is targeted by miR-223-3p and promotes osteogenic differentiation of bone marrow mesenchymal stem cells by enhancing autophagy
    Long, Cheng
    Cen, Shiqiang
    Zhong, Zhou
    Zhou, Chang
    Zhong, Gang
    HUMAN CELL, 2021, 34 (01) : 14 - 27