EFFICIENT MONTE CARLO METHOD FOR INTEGRAL FRACTIONAL LAPLACIAN IN MULTIPLE DIMENSIONS

被引:7
作者
Sheng, Changtao [1 ]
Su, Bihao [1 ]
Xu, Chenglong [1 ]
机构
[1] Shanghai Univ Finance & Econ, Sch Math, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
integral fractional Laplacian; Green function; Monte Carlo method; spherical coordinate; SPECTRAL GALERKIN METHOD; DIFFUSION; DYNAMICS; EQUATION; PDES; WALK; REGULARITY; SPHERES; GUIDE;
D O I
10.1137/22M1504706
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we develop a conditional Monte Carlo method for solving PDEs involving an integral fractional Laplacian on any bounded domain in arbitrary dimensions. We first construct the Feynman--Kac representation based on the Green function and Poisson kernel for the fractional Laplacian operator on the unit ball in arbitrary dimensions. Then, a conditional trajectory sampling algorithm is proposed for solving fractional PDEs in the complex domain, inspired by the "walk-on-spheres" algorithm proposed in [A. E. Kyprianou, A. Osojnik, and T. Shardlow, IMA J. Numer. Anal., 38 (2018), pp. 1550-1578]. The proposed method finds it remarkably efficient in solving fractional PDEs: it only needs to evaluate the integrals of expectation form over a sequence of balls maximally inscribed in the domains with the known Green function. Moreover, we prove the proposed method is unbiased and develop bounds on the error and mean stopping time. Finally, ample numerical results are presented to demonstrate the robustness and effectiveness of this approach for fractional PDEs in unit disk and complex domains, and even in ten-dimensional cases.
引用
收藏
页码:2035 / 2061
页数:27
相关论文
共 41 条
[1]   A FRACTIONAL LAPLACE EQUATION: REGULARITY OF SOLUTIONS AND FINITE ELEMENT APPROXIMATIONS [J].
Acosta, Gabriel ;
Pablo Borthagaray, Juan .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (02) :472-495
[2]   Aspects of an adaptive finite element method for the fractional Laplacian: A priori and a posteriori error estimates, efficient implementation and multigrid solver [J].
Ainsworth, Mark ;
Glusa, Christian .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 327 :4-35
[3]   Numerical approximation of the integral fractional Laplacian [J].
Bonito, Andrea ;
Lei, Wenyu ;
Pasciak, Joseph E. .
NUMERISCHE MATHEMATIK, 2019, 142 (02) :235-278
[4]   LOCAL ENERGY ESTIMATES FOR THE FRACTIONAL LAPLACIAN [J].
Borthagaray, Juan Pablo ;
Leykekhman, Dmitriy ;
Nochetto, Ricardo H. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2021, 59 (04) :1918-1947
[5]   The scaling laws of human travel [J].
Brockmann, D ;
Hufnagel, L ;
Geisel, T .
NATURE, 2006, 439 (7075) :462-465
[7]  
Chen H., 2021, Bull. Amer. Phys. Soc., V66
[8]  
Chen LZ, 2018, Arxiv, DOI arXiv:1803.03556
[9]   FEYNMAN-KAC TRANSFORM FOR ANOMALOUS PROCESSES [J].
Chen, Zhen-Qing ;
Deng, Weihua ;
Xu, Pengbo .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2021, 53 (05) :6017-6047
[10]  
Chung K.L., 1995, BROWNIAN MOTION SCHR, V312, DOI DOI 10.1007/978-3-642-57856-4