Regulating Lattice Oxygen of Co3O4/CeO2 Heterojunction Nanonetworks for Enhanced Oxygen Evolution

被引:9
作者
Zhao, Ziyu [1 ,2 ,3 ]
Yu, Meng [2 ]
Liu, Yawen [2 ]
Zeng, Tao [1 ]
Ye, Rongkai [2 ]
Liu, Yuchan [2 ]
Hu, Jianqiang [2 ]
Li, Aiqing [1 ]
机构
[1] Southern Med Univ, Natl Clin Res Ctr Kidney Dis, Guangdong Prov Key Lab Renal Failure Res, Nanfang Hosp,State Key Lab Organ Failure Res,Guang, Guangzhou 510515, Peoples R China
[2] South China Univ Technol, Sch Chem & Chem Engn, Key Lab Fuel Cell Technol Guangdong Prov, Guangzhou 510640, Peoples R China
[3] China Tobacco Hunan Ind Co Ltd, Technol Ctr, Changsha 410007, Peoples R China
来源
ADVANCED ENERGY AND SUSTAINABILITY RESEARCH | 2023年 / 4卷 / 12期
关键词
electrocatalysis; heterojunctions; metallic oxides; oxygen evolution reaction; rare-earth doping; ELECTRONIC-STRUCTURE; CATALYST; SURFACE; ELECTROCATALYSTS; NANOSHEETS; VACANCIES; NANORODS;
D O I
10.1002/aesr.202300123
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Developing efficient and cost-effective electrocatalysts as substitutes for noble metals remains a big challenge, which demands significant advancements in both material designing and mechanistic understanding. Herein, Co3O4/CeO2 heterojunction nanonetworks are successfully synthesized through metal organic framework precursor. Notably, Co3O4/CeO2 heterojunctions can effectively regulate electronic structure of Co3O4, thus inducing oxygen atom from Co3O4 lattice to participating in oxygen evolution reaction (OER) via lattice oxygen-mediated mechanism, which reduces reaction overpotential. Additionally, the porous network structure can facilitate electrolyte transfer and provide more active sites for electrocatalytic reactions. Consequently, Co3O4/CeO2 heterojunction nanonetworks exhibit great electrocatalytic performance and high durability, requiring only an OER overpotential of 259 mV at current density of 100 mA cm(-2 )in 1 M KOH, markedly outperforming Co3O4 nanocatalysts (309 mV) and showing promising potential as substitutable non-noble OER catalysts.
引用
收藏
页数:7
相关论文
共 43 条
[1]   Competing Effect of Co3+ Reducibility and Oxygen-Deficient Defects Toward High Oxygen Evolution Activity in Co3O4 Systems in Alkaline Medium [J].
Alex, Chandraraj ;
Sarma, Saurav Ch ;
Peter, Sebastian C. ;
John, Neena S. .
ACS APPLIED ENERGY MATERIALS, 2020, 3 (06) :5439-5447
[2]  
Anh Tuan H., 2021, J CLEAN PROD, V305, P127161
[3]   Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries [J].
Assat, Gaurav ;
Tarascon, Jean-Marie .
NATURE ENERGY, 2018, 3 (05) :373-386
[4]   Hydrazine Hydrate Induced Two-Dimensional Porous Co3+ Enriched Co3O4 Nanosheets for Enhanced Water Oxidation Catalysis [J].
Chen, Runzhe ;
Tan, Yangyang ;
Zhang, Zeyi ;
Lei, Zhao ;
Wu, Wei ;
Cheng, Niancai ;
Mu, Shichun .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (26) :9813-9821
[5]   Oxygen Evolution Reaction-The Enigma in Water Electrolysis [J].
Fabbri, Emiliana ;
Schmidt, Thomas J. .
ACS CATALYSIS, 2018, 8 (10) :9765-9774
[6]  
Fabbri E, 2017, NAT MATER, V16, P925, DOI [10.1038/NMAT4938, 10.1038/nmat4938]
[7]   Anionic redox processes for electrochemical devices [J].
Grimaud, A. ;
Hong, W. T. ;
Shao-Horn, Y. ;
Tarascon, J. -M. .
NATURE MATERIALS, 2016, 15 (02) :121-126
[8]  
Grimaud A, 2017, NAT CHEM, V9, P457, DOI [10.1038/NCHEM.2695, 10.1038/nchem.2695]
[9]   Superaerophobic Electrode with Metal@Metal-Oxide Powder Catalyst for Oxygen Evolution Reaction [J].
He, Jinling ;
Hu, Binbin ;
Zhao, Yong .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (33) :5998-6004
[10]   Separating the Effects of Band Bending and Covalency in Hybrid Perovskite Oxide Electrocatalyst Bilayers for Water Electrolysis [J].
Heymann, Lisa ;
Weber, Moritz L. ;
Wohlgemuth, Marcus ;
Risch, Marcel ;
Dittmann, Regina ;
Baeumer, Christoph ;
Gunkel, Felix .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (12) :14129-14136