Ab Initio Approach to the Structure, Vibrational Properties, and Electron Binding Energies of H2S•••SO2

被引:0
|
作者
Magalhaes, Isaac O. M. [1 ]
Cabral, Benedito J. C. [1 ,2 ]
Martins, Joao B. L. [1 ]
机构
[1] Univ Brasilia, Inst Chem, Computat Chem Lab, BR-70910900 Brasilia, DF, Brazil
[2] Fac Ciencias Lisboa, Biosyst & Integrat Sci Inst, BioISI, P-1749016 Lisbon, Portugal
来源
MOLECULES | 2023年 / 28卷 / 18期
关键词
vibrational spectroscopy; CCSD(T); H2S-SO2; complex; COUPLED-CLUSTER SINGLES; CONSISTENT BASIS-SETS; PHOTOELECTRON-SPECTROSCOPY; ANTHROPOGENIC EMISSIONS; MICROWAVE-SPECTRUM; ATOMIZATION ENERGY; SULFUR-DIOXIDE; AIR-POLLUTION; SO2; DOUBLES;
D O I
10.3390/molecules28186656
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The present study employs high-level ab initio calculations to investigate the structure, vibrational frequencies, and electronic properties of H2S<middle dot> <middle dot> <middle dot>SO2. The analysis of vibrational frequencies reveals an intramolecular vibrational energy transfer phenomenon, where energy from the stretching modes of H2S is transferred to the v1s mode of SO2. At the CCSD(T)/aug-cc-pVQZ level, the interaction energy between H2S and SO2 is predicted to be 2.78 kcal/mol. Electron propagator theory calculations yield a HOMO-LUMO gap of 8.24 eV for H2S<middle dot> <middle dot> <middle dot>SO2. Furthermore, by utilizing ab initio results for the adiabatic ionization energy and electron affinity, the electrophilicity of H2S<middle dot> <middle dot> <middle dot>SO2 is estimated to be 2.01 eV. This value is similar to the electrophilicity of SO2, suggesting comparable reactivity and chemical behavior. The non-covalent interaction (NCI) analysis of the H2S<middle dot> <middle dot> <middle dot>SO2 complex emphasizes the significant contribution of non-covalent van der Waals interactions in its energetic stabilization.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Electron binding energies of SO2 at the surface of a water cluster
    Martins, Joao B. L.
    Cabral, Benedito J. C.
    JOURNAL OF CHEMICAL PHYSICS, 2023, 159 (23)
  • [2] Interactions of SO2 and H2S with amorphous carbon films
    Michalak, W.
    Broitman, E.
    Alvin, M. A.
    Gellman, A. J.
    Miller, J. B.
    APPLIED CATALYSIS A-GENERAL, 2009, 362 (1-2) : 8 - 13
  • [3] Adsorption of SO2 and H2S by sonicated raw eggshell
    Ahmad, Waseem
    Sethupathi, Sumathi
    Kanadasan, Gobi
    Iberahim, Nursashabila
    Bashir, Mohammed J. K.
    Munusamy, Yamuna
    MATERIALS TODAY-PROCEEDINGS, 2020, 31 : 36 - 42
  • [4] Characterization and Mechanisms of H2S and SO2 Adsorption by Activated Carbon
    Shi, Lei
    Yang, Ke
    Zhao, Qiaopo
    Wang, Haiyan
    Cui, Qun
    ENERGY & FUELS, 2015, 29 (10) : 6678 - 6685
  • [5] MOF Materials for the Capture of Highly Toxic H2S and SO2
    Martinez-Ahumada, Eva
    Lopez-Olvera, Alfredo
    Jancik, Vojtech
    Sanchez-Bautista, Jonathan E.
    Gonzalez-Zamora, Eduardo
    Martis, Vladimir
    Williams, Daryl R.
    Ibarra, Ilich A.
    ORGANOMETALLICS, 2020, 39 (07) : 883 - 915
  • [6] Nickel Phosphide Nanoparticles for Selective Hydrogenation of SO2 to H2S
    Lu, Xinnan
    Baker, Mark A.
    Anjum, Dalaver H.
    Papawassiliou, Wassilios
    Pell, Andrew J.
    Fardis, Michael
    Papavassiliou, Georgios
    Hinder, Steven J.
    Gaber, Safa Abdullah Ali
    Gaber, Dina Abdullah Ali
    Al Wahedi, Yasser
    Polychronopoulou, Kyriaki
    ACS APPLIED NANO MATERIALS, 2021, 4 (07) : 6568 - 6582
  • [7] Correlations for the Dielectric Constants of H2S, SO2, and SF6
    Harvey, Allan H.
    Mountain, Raymond D.
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2017, 38 (10)
  • [8] H2S and SO2 adsorption on Cu doped MoSe2: DFT investigation
    Ayesh, Ahmad, I
    PHYSICS LETTERS A, 2022, 422
  • [9] DFT investigation of H2S and SO2 adsorption on Zn modified MoSe2
    Ayesh, Ahmad I. I.
    SUPERLATTICES AND MICROSTRUCTURES, 2022, 162
  • [10] Adsorption Mechanism and Regeneration Performance of 13X for H2S and SO2
    Yang, Ke
    Su, Baihang
    Shi, Lei
    Wang, Haiyan
    Cui, Qun
    ENERGY & FUELS, 2018, 32 (12) : 12742 - 12749