Genome-Wide Identification and Expression Analysis of the RADIALIS-like Gene Family in Camellia sinensis

被引:1
|
作者
Wang, Shaoying [1 ]
Wen, Beibei [1 ]
Yang, Yun [1 ]
Long, Shanshan [1 ]
Liu, Jianjun [1 ]
Li, Meifeng [1 ]
机构
[1] Guizhou Univ, Coll Tea Sci, Guiyang 550025, Peoples R China
来源
PLANTS-BASEL | 2023年 / 12卷 / 17期
关键词
RADIALIS-like (RL); bioinformatics analysis; abiotic stress; self-activation; yeast two-hybrid system; COROLLA SYMMETRY; TRANSCRIPTION; EVOLUTION; ARABIDOPSIS; PATTERNS; DOMAIN; MECHANISMS; INSIGHTS; STRESS;
D O I
10.3390/plants12173039
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The RADIALIS-like (RL) proteins are v-myb avian myeloblastosis viral oncogene homolog (MYB)-related transcription factors (TFs), and are involved in many biological processes, including metabolism, development, and response to biotic and abiotic stresses. However, the studies on the RL genes of Camellia sinensis are not comprehensive enough. Therefore, we undertook this study and identified eight CsaRLs based on the typical conserved domain SANT Associated domain (SANT) of RL. These genes have low molecular weights and theoretical pI values ranging from 5.67 to 9.76. Gene structure analysis revealed that six CsaRL genes comprise two exons and one intron, while the other two contain a single exon encompassing motifs 1 and 2, and part of motif 3. The phylogenetic analysis divided one hundred and fifty-eight RL proteins into five primary classes, in which CsaRLs clustered in Group V and were homologous with CssRLs of the Shuchazao variety. In addition, we selected different tissue parts to analyze the expression profile of CsaRLs, and the results show that almost all genes displayed variable expression levels across tissues, with CsaRL1a relatively abundant in all tissues. qRT-PCR (real-time fluorescence quantitative PCR) was used to detect the relative expression levels of the CsaRL genes under various abiotic stimuli, and it was found that CsaRL1a expression levels were substantially higher than other genes, with abscisic acid (ABA) causing the highest expression. The self-activation assay with yeast two-hybrid system showed that CsaRL1a has no transcriptional activity. According to protein functional interaction networks, CsaRL1a was well connected with WIN1-like, lysine histidine transporter-1-like, beta-amylase 3 chloroplastic-like, carbonic anhydrase-2-like (CA2), and carbonic anhydrase dnaJC76 (DJC76). This study adds to our understanding of the RL family and lays the groundwork for further research into the function and regulatory mechanisms of the CsaRLs gene family in Camellia sinensis.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Genome-wide identification, classification and expression pattern of LBD gene family in Camellia sinensis
    Teng, Rui-Min
    Wang, Yong-Xin
    Wang, Wen-Li
    Li, Hui
    Shen, Wei
    Zhuang, Jing
    BIOTECHNOLOGY & BIOTECHNOLOGICAL EQUIPMENT, 2018, 32 (06) : 1387 - 1397
  • [2] Genome-wide identification and expression analysis of the Dof gene family under drought stress in tea (Camellia sinensis)
    Yu, Qian
    Li, Chen
    Zhang, Jiucheng
    Tian, Yueyue
    Wang, Hanyue
    Zhang, Yue
    Zhang, Zhengqun
    Xiang, Qinzeng
    Han, Xiaoyang
    Zhang, Lixia
    PEERJ, 2020, 8
  • [3] Genome-Wide Identification and Expression Analysis of the NRAMP Family Genes in Tea Plant (Camellia sinensis)
    Li, Jinqiu
    Duan, Yu
    Han, Zhaolan
    Shang, Xiaowen
    Zhang, Kexin
    Zou, Zhongwei
    Ma, Yuanchun
    Li, Fang
    Fang, Wanping
    Zhu, Xujun
    PLANTS-BASEL, 2021, 10 (06):
  • [4] Genome-Wide Identification, Characterization, and Expression Profiling of the Glutaredoxin Gene Family in Tea Plant (Camellia sinensis)
    Jiang, Dong
    Yang, Wenhai
    Pi, Jianhui
    Yang, Guoqun
    Luo, Yong
    Du, Shenxiu
    Li, Ning
    Huang, Li-Jun
    FORESTS, 2023, 14 (08):
  • [5] Genome-Wide Analysis of the TCP Gene Family and Their Expression Pattern Analysis in Tea Plant (Camellia sinensis)
    Shang, Xiaowen
    Han, Zhaolan
    Zhang, Dayan
    Wang, Ya
    Qin, Hao
    Zou, Zhongwei
    Zhou, Lin
    Zhu, Xujun
    Fang, Wanping
    Ma, Yuanchun
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [6] Genome-wide identification, expression profiling, and protein interaction analysis of the CCoAOMT gene family in the tea plant (Camellia sinensis)
    Yiqing Wang
    Tao Wang
    Siyu Qi
    Jiamin Zhao
    Jiumei Kong
    Zhihui Xue
    Weijiang Sun
    Wen Zeng
    BMC Genomics, 25
  • [7] NHX Gene Family in Camellia sinensis: In-silico Genome-Wide Identification, Expression Profiles, and Regulatory Network Analysis
    Paul, Abhirup
    Chatterjee, Archita
    Subrahmanya, Shreya
    Shen, Guoxin
    Mishra, Neelam
    FRONTIERS IN PLANT SCIENCE, 2021, 12
  • [8] Genome-wide identification, characterization and expression analysis of the amino acid permease gene family in tea plants ( Camellia sinensis ) /
    Duan, Yu
    Zhu, Xujun
    Shen, Jiazhi
    Xing, Hongqing
    Zou, Zhongwei
    Ma, Yuanchun
    Wang, Yuhua
    Fang, Wanping
    GENOMICS, 2020, 112 (04) : 2866 - 2874
  • [9] Genome-wide identification, expression profiling, and protein interaction analysis of the CCoAOMT gene family in the tea plant (Camellia sinensis)
    Wang, Yiqing
    Wang, Tao
    Qi, Siyu
    Zhao, Jiamin
    Kong, Jiumei
    Xue, Zhihui
    Sun, Weijiang
    Zeng, Wen
    BMC GENOMICS, 2024, 25 (01)
  • [10] Genome-wide identification and expression analysis of GRAS family transcription factors in tea plant (Camellia sinensis)
    Yong-Xin Wang
    Zhi-Wei Liu
    Zhi-Jun Wu
    Hui Li
    Wen-Li Wang
    Xin Cui
    Jing Zhuang
    Scientific Reports, 8