Tetromino tilings on the Tetris board*

被引:0
作者
Oh, Seungsang [1 ]
Yi, Jaehwan [2 ]
机构
[1] Korea Univ, Dept Math, Seoul 02841, South Korea
[2] Univ Washington, Dept Stat, Seattle, WA 98105 USA
基金
新加坡国家研究基金会;
关键词
tetromino; tetris; tiling; enumeration; STATISTICAL-MECHANICS; DIMERS;
D O I
10.1088/1402-4896/acdc61
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Tetrominos, comprised of four identical squares joined together along edges, have achieved substantial popular recognition as the elemental components of the widely known game, Tetris. In this paper, we present a recursive formula aimed at exact enumeration of tetromino tilings on a rectangular board with dimensions m x n. Furthermore, we modify the tiling criterion to mirror the Tetris gameplay, resulting in what we term Tetris tiling of height n. By employing this adjusted condition, we accurately calculate the total number of Tetris tilings. Additionally, the asymptotic behavior of the growth rate associated with the tetromino tiling is discussed.
引用
收藏
页数:8
相关论文
共 19 条
[1]   Tromino tilings of domino-deficient rectangles [J].
Aanjaneya, Mridul .
DISCRETE MATHEMATICS, 2009, 309 (04) :937-944
[2]   STATISTICAL MECHANICS OF DIMERS ON A PLANE LATTICE [J].
FISHER, ME .
PHYSICAL REVIEW, 1961, 124 (06) :1664-&
[3]   Random trimer tilings [J].
Ghosh, Anandamohan ;
Dhar, Deepak ;
Jacobsen, Jesper L. .
PHYSICAL REVIEW E, 2007, 75 (01)
[4]  
Golomb S.W., 1994, Polyominoes, Puzzles, Patterns, Problems, and Packagings, V2nd
[5]   THEORY OF MONOMER-DIMER SYSTEMS [J].
HEILMANN, OJ ;
LIEB, EH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1972, 25 (03) :190-&
[6]   Tetromino tilings and the Tutte polynomial [J].
Jacobsen, Jesper Lykke .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (07) :1439-1446
[7]   STATISTICS OF DIMERS ON A LATTICE .1. NUMBER OF DIMER ARRANGEMENTS ON A QUADRATIC LATTICE [J].
KASTELEYN, P .
PHYSICA, 1961, 27 (12) :1209-+
[8]   The asymptotic determinant of the discrete Laplacian [J].
Kenyon, R .
ACTA MATHEMATICA, 2000, 185 (02) :239-286
[9]   Dimers and amoebae [J].
Kenyon, Richard ;
Okounkov, Andrei ;
Sheffield, Scott .
ANNALS OF MATHEMATICS, 2006, 163 (03) :1019-1056
[10]   Tilings of rectangles with T-tetrominoes [J].
Korn, M ;
Pak, I .
THEORETICAL COMPUTER SCIENCE, 2004, 319 (1-3) :3-27