Automation of pencil beam scanning proton treatment planning for intracranial tumours

被引:0
作者
Placidi, Lorenzo [1 ]
Righetto, Roberto [2 ]
Vecchi, Claudio [3 ]
Zara, Stefania [3 ]
Alparone, Alessandro [3 ]
Moretti, Roberto [4 ]
Amelio, Dante [2 ]
Scartoni, Daniele [2 ]
Schwarz, Marco [2 ,5 ]
机构
[1] Fdn Policlin Univ Agostino Gemelli IRCCS, Rome, Italy
[2] APSS, Proton Therapy Dept, Trento, Italy
[3] Tecnol Avanzate Srl, Turin, Italy
[4] Univ Cattolica Sacro Cuore, Rome, Italy
[5] Fred Hutchinson Canc Ctr, Dept Radiat Oncol, Seattle, WA USA
来源
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS | 2023年 / 105卷
关键词
Automatic planning; Automatic beam selection; Proton therapy; Intracranial tumor; PBS; CLINICAL IMPLEMENTATION; DOSE DISTRIBUTIONS; THERAPY; OPTIMIZATION; RADIOTHERAPY; UNCERTAINTY; VALIDATION; PREDICTION; EFFICIENCY; SELECTION;
D O I
10.1016/j.ejmp.2022.11.007
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To evaluate the feasibility of comprehensive automation of an intra-cranial proton treatment planning. Materials and methods: Class solution (CS) beam configuration selection allows the user to identify predefined beam configuration based on target localization; automatic CS (aCS) will then explore all the possible CS beam geometries. Ten patients, already used for the evaluation of the automatic selection of the beam configuration, have been also employed to training an algorithm based on the computation of a benchmark dose exploit automatic general planning solution (GPS) optimization with a wish list approach for the planning optimization. An independent cohort of ten patients has been then used for the evaluation step between the clinical and the GPS plan in terms of dosimetric quality of plans and the time needed to generate a plan. Results: The definition of a beam configuration requires on average 22 min (range 9-29 min). The average time for GPS plan generation is 18 min (range 7-26 min). Median dose differences (GPS-Manual) for each OAR constraints are: brainstem 1.60 Gy, left cochlea 1.22 Gy, right cochlea 1.42 Gy, left eye 0.55 Gy, right eye 2.33 Gy, optic chiasm 1.87 Gy, left optic nerve 4.45 Gy, right optic nerve 2.48 Gy and optic tract 0.31 Gy. Dosimetric CS and aCS plan evaluation shows a slightly worsening of the OARs values except for the optic tract and optic chiasm for both CS and aCS, where better results have been observed. Conclusion: This study has shown the feasibility and implementation of the automatic planning system for intracranial tumors. The method developed in this work is ready to be implemented in a clinical workflow.
引用
收藏
页数:9
相关论文
共 47 条
[1]   The impact of treatment accuracy on proton therapy patient selection for oropharyngeal cancer patients [J].
Arts, Tine ;
Breedveld, Sebastiaan ;
de Jong, Martin A. ;
Astreinidou, Eleftheria ;
Tans, Lisa ;
Keskin-Cambay, Fatma ;
Krol, Augustinus D. G. ;
van de Water, Steven ;
Bijman, Rik G. ;
Hoogeman, Mischa S. .
RADIOTHERAPY AND ONCOLOGY, 2017, 125 (03) :520-525
[2]   Creation of knowledge-based planning models intended for large scale distribution: Minimizing the effect of outlier plans [J].
Aviles, Jorge Edmundo Alpuche ;
Marcos, Maria Isabel Cordero ;
Sasaki, David ;
Sutherland, Keith ;
Kane, Bill ;
Kuusela, Esa .
JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2018, 19 (03) :215-226
[3]   Three-dimensional dose prediction for lung IMRT patients with deep neural networks: robust learning from heterogeneous beam configurations [J].
Barragan-Montero, Ana Maria ;
Dan Nguyen ;
Lu, Weiguo ;
Lin, Mu-Han ;
Norouzi-Kandalan, Roya ;
Geets, Xavier ;
Sterpin, Edmond ;
Jiang, Steve .
MEDICAL PHYSICS, 2019, 46 (08) :3679-3691
[4]   Pre-clinical validation of a novel system for fully-automated treatment planning [J].
Bijman, Rik ;
Sharfo, Abdul Wahab ;
Rossi, Linda ;
Breedveld, Sebastiaan ;
Heijmen, Ben .
RADIOTHERAPY AND ONCOLOGY, 2021, 158 :253-261
[5]   Impact of model and dose uncertainty on model-based selection of oropharyngeal cancer patients for proton therapy [J].
Bijman, Rik G. ;
Breedveld, Sebastiaan ;
Arts, Tine ;
Astreinidou, Eleftheria ;
de Jong, Martin A. ;
Granton, Patrick V. ;
Petit, Steven F. ;
Hoogeman, Mischa S. .
ACTA ONCOLOGICA, 2017, 56 (11) :1444-1450
[6]   Pencil beam scanning proton therapy for the treatment of craniopharyngioma complicated with radiation-induced cerebral vasculopathies: A dosimetric and linear energy transfer (LET) evaluation [J].
Bolsi, Alessandra ;
Placidi, Lorenzo ;
Pica, Alessia ;
Ahlhelm, Frank J. ;
Walser, Marc ;
Lomax, Antony J. ;
Weber, Damien C. .
RADIOTHERAPY AND ONCOLOGY, 2020, 149 :197-204
[7]   A novel approach to multi-criteria inverse planning for IMRT [J].
Breedveld, Sebastiaan ;
Storchi, Pascal R. M. ;
Keijzer, Marleen ;
Heemink, Arnold W. ;
Heijmen, Ben J. M. .
PHYSICS IN MEDICINE AND BIOLOGY, 2007, 52 (20) :6339-6353
[8]   iCycle: Integrated, multicriterial beam angle, and profile optimization for generation of coplanar and noncoplanar IMRT plans [J].
Breedveld, Sebastiaan ;
Storchi, Pascal R. M. ;
Voet, Peter W. J. ;
Heijmen, Ben J. M. .
MEDICAL PHYSICS, 2012, 39 (02) :951-963
[9]   Knowledge-based treatment planning: An inter-technique and inter-system feasibility study for prostate cancer [J].
Cagni, Elisabetta ;
Botti, Andrea ;
Micera, Renato ;
Galeandro, Maria ;
Sghedoni, Roberto ;
Orlandi, Matteo ;
Iotti, Cinzia ;
Cozzi, Luca ;
Iori, Mauro .
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2017, 36 :38-45
[10]   Clinical Implementation of Knowledge-Based Automatic Plan Optimization for Helical Tomotherapy [J].
Castriconi, Roberta ;
Cattaneo, Giovanni Mauro ;
Mangili, Paola ;
Esposito, Piergiorgio ;
Broggi, Sara ;
Cozzarini, Cesare ;
Deantoni, Chiara ;
Fodor, Andrei ;
Muzio, Nadia G. Di ;
del Vecchio, Antonella ;
Fiorino, Claudio .
PRACTICAL RADIATION ONCOLOGY, 2021, 11 (02) :E236-E244