Divergent sequence of nontrivial solutions for superlinear double phase problems

被引:2
作者
Papageorgiou, Nikolaos S. [1 ]
Vetro, Calogero [2 ]
Vetro, Francesca
机构
[1] Natl Tech Univ Athens, Dept Math, Zografou campus, Athens 15780, Greece
[2] Univ Palermo, Dept Math & Comp Sci, Via Archirafi 34, I-90123 Palermo, Italy
关键词
Double phase operator; generalized Orlicz spaces; Z(2)-mountain pass theorem; C-condition; AR-condition; REGULARITY; EXISTENCE; CALCULUS;
D O I
10.3233/ASY-231830
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a double phase (unbalanced growth) Dirichlet problem with a Caratheodory reaction f (z, x) which is superlinear in x but without satisfying the AR-condition. Using the symmetric mountain pass theorem, we produce a whole sequence of distinct bounded solutions which diverge to infinity.
引用
收藏
页码:183 / 192
页数:10
相关论文
共 21 条
[1]   Regularity for general functionals with double phase [J].
Baroni, Paolo ;
Colombo, Maria ;
Mingione, Giuseppe .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (02)
[2]   Constant sign and nodal solutions for superlinear double phase problems [J].
Gasinski, Leszek ;
Papageorgiou, Nikolaos S. .
ADVANCES IN CALCULUS OF VARIATIONS, 2021, 14 (04) :613-626
[3]   Constant sign solutions for double phase problems with superlinear nonlinearity [J].
Gasinski, Leszek ;
Winkert, Patrick .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 195
[4]   Orlicz Spaces and Generalized Orlicz Spaces [J].
Harjulehto, Petteri ;
Hasto, Peter .
ORLICZ SPACES AND GENERALIZED ORLICZ SPACES, 2019, 2236 :V-+
[5]   Maximal regularity for local minimizers of non-autonomous functionals [J].
Hasto, Peter ;
Ok, Jihoon .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2022, 24 (04) :1285-1334
[6]  
Hu S., 2022, RES TOPICS ANAL, V1
[7]   Existence and multiplicity of solutions to concave-convex-type double-phase problems with variable exponent [J].
Kim, In Hyoun ;
Kim, Yun-Ho ;
Oh, Min Wook ;
Zeng, Shengda .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2022, 67
[8]   Anisotropic Dirichlet double phase problems with competing nonlinearities [J].
Leonardi, S. ;
Papageorgiou, Nikolaos S. .
REVISTA MATEMATICA COMPLUTENSE, 2023, 36 (02) :469-490
[9]   Existence and multiplicity results for double phase problem [J].
Liu, Wulong ;
Dai, Guowei .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (09) :4311-4334
[10]  
MARCELLINI P, 1989, ARCH RATION MECH AN, V105, P267