Effect of equilibrium constant for carbon dioxide recombination in hypersonic flow analysis

被引:3
作者
Yang, Yosheph [1 ]
Sethuraman, Vignesh Ram Petha [2 ]
Kim, Jae Gang [2 ]
机构
[1] Sejong Univ, Dept Aerosp Engn, Seoul 05006, South Korea
[2] Sejong Univ, Dept Aerosp Syst Engn, Seoul 05006, South Korea
基金
新加坡国家研究基金会;
关键词
Equilibrium constant; Carbon dioxide; Hypersonic flow; Martian entry; Thermochemical nonequilibrium; HIGH-ENTHALPY AEROTHERMODYNAMICS; MARS ENTRY VEHICLE; KINETICS; COMPUTATIONS; ASSOCIATION; CHEMISTRY; DATABASE; O(P-3); PART; CO;
D O I
10.1016/j.csite.2023.102947
中图分类号
O414.1 [热力学];
学科分类号
摘要
An equilibrium constant is an important parameter in regard to determining the backward reaction rate constant in chemical kinetics modeling for a hypersonic flow. Three common ap-proaches for the equilibrium constant determination are based on the partition function, Gibbs free energy, and the experimental reaction rate measurement. The present study conducted a computational fluid dynamics (CFD) analysis with different equilibrium constant formulations in a thermochemical nonequilibrium hypersonic flow in order to study the influence of the equilibrium constant in carbon dioxide flow during the Martian entry. The equilibrium constant for the carbon dioxide molecule dissociation differs from one method to another among the reactions that are considered in the carbon dioxide flow. Three different flow conditions, which are based on the experimental data that is provided in the literature, are considered in the detailed comparison analysis using CFD. The variation of the flow properties in terms of pressure, temperature, and mass fraction along the stagnation line is compared for different cases of the equilibrium constant computation. The results that are obtained from the present study confirm that the equilibrium constant influences the numerical computation in the thermochemical nonequilibrium flow especially for the non-catalytic wall boundary condition.
引用
收藏
页数:14
相关论文
共 56 条
[1]  
[Anonymous], 1983, CHEM COMBUSTION PROC, V249, P267, DOI [10.1021/bk-1983-0249.ch016, DOI 10.1021/BK-1983-0249.CH016]
[2]   Advanced Models for Vibrational and Chemical Kinetics Applied to Mars Entry Aerothermodynamics [J].
Armenise, Iole ;
Reynier, Philippe ;
Kustova, Elena .
JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 2016, 30 (04) :705-720
[3]  
Baulch D.L., 1976, Evaluated kinetic data for high temperature reactions vol. 3: Homogeneous gas phase reactions of the O2-O3 system, the CO-O2-H2 system, V3
[4]   Uncertainty analysis of laminar aeroheating predictions for mars entries [J].
Bose, Deepak ;
Wright, Michael J. ;
Palmer, Grant E. .
JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 2006, 20 (04) :652-662
[5]   Experimental and numerical study of the Mars Pathfinder vehicle [J].
Bur, R ;
Benay, R ;
Chanetz, B ;
Galli, A ;
Pot, T ;
Hollis, B ;
Moss, J .
AEROSPACE SCIENCE AND TECHNOLOGY, 2003, 7 (07) :510-516
[6]   RATE CONSTANTS FOR O(P-3) RECOMBINATION AND ASSOCIATION WITH N(S-4) [J].
CAMPBELL, IM ;
GRAY, CN .
CHEMICAL PHYSICS LETTERS, 1973, 18 (04) :607-609
[7]   ASSOCIATION OF OXYGEN ATOMS AND THEIR COMBINATION WITH NITROGEN ATOMS [J].
CAMPBELL, IM ;
THRUSH, BA .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1967, 296 (1445) :222-&
[8]  
Candler G., 5 JOINT THERMOPHYS, DOI [10.2514/6.1990-1695, DOI 10.2514/6.1990-1695]
[9]   Mars 2020 Mission Overview [J].
Farley, Kenneth A. ;
Williford, Kenneth H. ;
Stack, Kathryn M. ;
Bhartia, Rohit ;
Chen, Al ;
de la Torre, Manuel ;
Hand, Kevin ;
Goreva, Yulia ;
Herd, Christopher D. K. ;
Hueso, Ricardo ;
Liu, Yang ;
Maki, Justin N. ;
Martinez, German ;
Moeller, Robert C. ;
Nelessen, Adam ;
Newman, Claire E. ;
Nunes, Daniel ;
Ponce, Adrian ;
Spanovich, Nicole ;
Willis, Peter A. ;
Beegle, Luther W. ;
Bell, James F., III ;
Brown, Adrian J. ;
Hamran, Svein-Erik ;
Hurowitz, Joel A. ;
Maurice, Sylvestre ;
Paige, David A. ;
Rodriguez-Manfredi, Jose A. ;
Schulte, Mitch ;
Wiens, Roger C. .
SPACE SCIENCE REVIEWS, 2020, 216 (08)
[10]   DIRECT DETERMINATION OF THE RATE-CONSTANT FOR THE REACTION CO+N2O-]CO2+N2 [J].
FUJII, N ;
KAKUDA, T ;
SUGIYAMA, T ;
MIYAMA, H .
CHEMICAL PHYSICS LETTERS, 1985, 122 (05) :489-492