Time-related survival prediction in molecular subtypes of breast cancer using time-to-event deep-learning-based models

被引:7
|
作者
Shahraki, Saba Zarean [1 ]
Looha, Mehdi Azizmohammad [2 ]
Kazaj, Pooya Mohammadi [3 ]
Aria, Mehrad [4 ]
Akbari, Atieh [5 ]
Emami, Hassan [1 ]
Asadi, Farkhondeh [1 ]
Akbari, Mohammad Esmaeil [5 ]
机构
[1] Shahid Beheshti Univ Med Sci, Sch Allied Med Sci, Dept Hlth Informat Technol & Management, Tehran, Iran
[2] Shahid Beheshti Univ Med Sci, Res Inst Gastroenterol & Liver Dis, Basic & Mol Epidemiol Gastrointestinal Disorders R, Tehran, Iran
[3] KN Toosi Univ Technol, Fac Geodesy & Geomat Engn, Geog Informat Syst Dept, Tehran, Iran
[4] Azarbaijan Shahid Madani Univ, Fac Informat Technol & Comp Engn, Tehran, Iran
[5] Shahid Beheshti Univ Med Sci, Canc Res Ctr, Tehran, Iran
来源
FRONTIERS IN ONCOLOGY | 2023年 / 13卷
关键词
breast cancer survival prediction; breast cancer molecular subtypes; survival prediction models; survival analysis; time-to-event machine learning models; deep learning survival models; feature importance; AI application in breast cancer; DISEASE-FREE SURVIVAL; PROGNOSTIC-FACTORS; CLASSIFICATION; STAGE; AMPLIFICATION; TRASTUZUMAB; MANAGEMENT; THERAPY; RELAPSE; COHORT;
D O I
10.3389/fonc.2023.1147604
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
BackgroundBreast cancer (BC) survival prediction can be a helpful tool for identifying important factors selecting the effective treatment reducing mortality rates. This study aims to predict the time-related survival probability of BC patients in different molecular subtypes over 30 years of follow-up. Materials and methodsThis study retrospectively analyzed 3580 patients diagnosed with invasive breast cancer (BC) from 1991 to 2021 in the Cancer Research Center of Shahid Beheshti University of Medical Science. The dataset contained 18 predictor variables and two dependent variables, which referred to the survival status of patients and the time patients survived from diagnosis. Feature importance was performed using the random forest algorithm to identify significant prognostic factors. Time-to-event deep-learning-based models, including Nnet-survival, DeepHit, DeepSurve, NMLTR and Cox-time, were developed using a grid search approach with all variables initially and then with only the most important variables selected from feature importance. The performance metrics used to determine the best-performing model were C-index and IBS. Additionally, the dataset was clustered based on molecular receptor status (i.e., luminal A, luminal B, HER2-enriched, and triple-negative), and the best-performing prediction model was used to estimate survival probability for each molecular subtype. ResultsThe random forest method identified tumor state, age at diagnosis, and lymph node status as the best subset of variables for predicting breast cancer (BC) survival probabilities. All models yielded very close performance, with Nnet-survival (C-index=0.77, IBS=0.13) slightly higher using all 18 variables or the three most important variables. The results showed that the Luminal A had the highest predicted BC survival probabilities, while triple-negative and HER2-enriched had the lowest predicted survival probabilities over time. Additionally, the luminal B subtype followed a similar trend as luminal A for the first five years, after which the predicted survival probability decreased steadily in 10- and 15-year intervals. ConclusionThis study provides valuable insight into the survival probability of patients based on their molecular receptor status, particularly for HER2-positive patients. This information can be used by healthcare providers to make informed decisions regarding the appropriateness of medical interventions for high-risk patients. Future clinical trials should further explore the response of different molecular subtypes to treatment in order to optimize the efficacy of breast cancer treatments.
引用
收藏
页数:13
相关论文
共 43 条
  • [41] Radiomics-Based Deep Learning Prediction of Overall Survival in Non-Small-Cell Lung Cancer Using Contrast-Enhanced Computed Tomography
    Hou, Kuei-Yuan
    Chen, Jyun-Ru
    Wang, Yung-Chen
    Chiu, Ming-Huang
    Lin, Sen-Ping
    Mo, Yuan-Heng
    Peng, Shih-Chieh
    Lu, Chia-Feng
    CANCERS, 2022, 14 (15)
  • [42] Population Based Survival Analysis of Females Diagnosed with Breast Cancer and Its Related Factors in Kerman Province from 2001 to 2015 Using Parametric Log-Logistic Models
    Tavakkoli, Ali
    Khandani, Behjat Kalantari
    Mirzai, Moghadameh
    Khanjani, Narges
    Moazed, Vahid
    INTERNATIONAL JOURNAL OF CANCER MANAGEMENT, 2021, 14 (08)
  • [43] Measuring the Time to Deterioration for Health-Related Quality of Life in Patients With Metastatic Breast Cancer Using a Web-Based Monitoring Application: Longitudinal Cohort Study
    Brusniak, Katharina
    Feisst, Manuel
    Sebesteny, Linda
    Hartkopf, Andreas
    Graf, Joachim
    Engler, Tobias
    Schneeweiss, Andreas
    Wallwiener, Markus
    Deutsch, Thomas Maximilian
    JMIR CANCER, 2021, 7 (04):