Analysing the influence of power take-off adaptability on the power extraction of dense wave energy converter arrays

被引:5
作者
Bechlenberg, Alva [1 ]
Wei, Yanji [2 ]
Jayawardhana, Bayu [3 ]
Vakis, Antonis I. [1 ]
机构
[1] Univ Groningen, Engn & Technol Inst Groningen, Computat Mech & Mat Engn, Nijenborgh 4, NL-9747 AG Groningen, Netherlands
[2] Yongriver Inst Technol, Eastern Inst Adv Study, Ningbo 315201, Zhejiang, Peoples R China
[3] Univ Groningen, Engn & Technol Inst Groningen, Discrete Technol & Prod Automat, Nijenborgh 4, NL-9747 AG Groningen, Netherlands
关键词
Adaptability; Capture width ratio; Ocean grazer; Power matrix; Power take off; Wave energy converter array; CONTROL STRATEGIES; CONVERSION; SYSTEM; ABSORPTION; EFFICIENCY; CAPTURE; IMPACT; MODEL;
D O I
10.1016/j.renene.2023.04.076
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The aim of this work is to assess the influence of different degrees of adaptability of the power take-off (PTO) system on the power absorption of dense wave energy converter (WEC) arrays. The adaptability is included in simulations through a transmission ratio that scales the force actuating the PTO relative to the force generated by the motion of a floater. A numerical model is used in which hydrodynamic interactions between floaters and nonlinearities in the PTO are considered. The lower computational cost of this numerical model makes it possible to study the power extraction of a dense WEC array in irregular waves to easily create power matrices and other performance metrics. The methodology is applied to the case study of the Ocean Grazer WEC to showcase the potential performance improvements achieved through the inclusion of a transmission ratio. The analysis shows that including a high degree of adaptability and choosing WEC array configurations and PTO designs specific to potential deployment locations early in the design process can lead to an increase in extracted power.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [21] Optimisation of Control Algorithm for Hydraulic Power Take-Off System in Wave Energy Converter
    Andersen, Niklas Enoch
    Mathiasen, Jakob Blabjerg
    Caroe, Maja Grankaer
    Chen, Chen
    Helver, Christian-Emil
    Ludvigsen, Allan Lynggaard
    Ebsen, Nis Frededal
    Hansen, Anders Hedegaard
    ENERGIES, 2022, 15 (19)
  • [22] Modeling and Experimental Investigation on Performance of a Wave Energy Converter with Mechanical Power Take-Off
    Dang, Tri Dung
    Cong Binh Phan
    Ahn, Kyoung Kwan
    INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING-GREEN TECHNOLOGY, 2019, 6 (04) : 751 - 768
  • [23] Survey of the mechanisms of power take-off (PTO) devices of wave energy converters
    Liu, Z.
    Zhang, R.
    Xiao, H.
    Wang, X.
    ACTA MECHANICA SINICA, 2020, 36 (03) : 644 - 658
  • [24] Power capture and power take-off load of a self-balanced dual-flap oscillating surge wave energy converter
    Ahmed, Alaa
    Mi, Jia
    Huang, Jianuo
    Datla, Raju
    Connington, Kevin
    Zuo, Lei
    Hajj, Muhammad R.
    ENERGY, 2024, 291
  • [25] Latching control of a raft-type wave energy converter with a hydraulic power take-off system
    Liu, Changhai
    Hu, Min
    Zhao, Zhixue
    Zeng, Yishan
    Gao, Wenzhi
    Chen, Jian
    Yan, Hao
    Zhang, Junhui
    Yang, Qingjun
    Bao, Gang
    Chen, Suxin
    Wei, Daozhu
    Min, Sijie
    OCEAN ENGINEERING, 2021, 236
  • [26] Investigating the adaptability of the multi-pump multi-piston power take-off system for a novel wave energy converter
    Wei, Y.
    Barradas-Berglind, J. J.
    van Rooij, M.
    Prins, W. A.
    Jayawardhana, B.
    Vakis, A. I.
    RENEWABLE ENERGY, 2017, 111 : 598 - 610
  • [27] Influence of a quadratic power take-off on the behaviour of a self-contained inertial referenced wave energy converter
    Bailey, Helen
    Bryden, Ian G.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART M-JOURNAL OF ENGINEERING FOR THE MARITIME ENVIRONMENT, 2012, 226 (M1) : 15 - 22
  • [28] A novel discrete control for wave energy converters with a hydraulic power take-off system
    Liu, Changhai
    Zhao, Zhixue
    Hu, Min
    Gao, Wenzhi
    Chen, Jian
    Yan, Hao
    Zeng, Yishang
    Zhang, Tao
    Liu, Xuling
    Yang, Qingjun
    Bao, Gang
    Chen, Suxin
    Wei, Daozhu
    OCEAN ENGINEERING, 2022, 249
  • [29] Selection of an oscillating type wave energy converter and a power take-off system for the use of wave energy in Colombia
    Castano-Serna, Juan Pablo
    Chica-Arrieta, Edwin
    UIS INGENIERIAS, 2023, 22 (02): : 141 - 165
  • [30] NUMERICAL ANALYSIS AND WAVE TANK TEST OF A POINT ABSORBER WAVE ENERGY CONVERTER USING A TETHER DRIVEN POWER TAKE-OFF SYSTEM
    Zhang, Hu
    Sun, Liang
    Liu, Jingxuan
    Mi, Jia
    Li, Xiaofan
    Xu, Lin
    Zuo, Lei
    PROCEEDINGS OF ASME 2023 INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, IDETC-CIE2023, VOL 12, 2023,