Multiparametric Quantitative Imaging Biomarkers for Phenotype Classification: A Framework for Development and Validation

被引:3
作者
Delfino, Jana G. [1 ]
Pennello, Gene A. [1 ]
Barnhart, Huiman X. [2 ]
Buckler, Andrew J. [3 ]
Wang, Xiaofeng [4 ]
Huang, Erich P. [5 ]
Raunig, Dave L. [6 ]
Guimaraes, Alexander R. [7 ]
Hall, Timothy J. [8 ]
deSouza, Nandita M. [9 ,10 ]
Obuchowski, Nancy [11 ]
机构
[1] US FDA, Ctr Devices & Radiol Hlth, Silver Spring, MD 20993 USA
[2] Duke Univ, Dept Biostat & Bioinformat, Durham, NC USA
[3] Elucid Bioimaging Inc, Boston, MA USA
[4] Cleveland Clin, Lerner Res Inst, Dept Quantitat Hlth Sci, Cleveland Hts, OH USA
[5] Natl Canc Inst, NIH, Biometr Res Program, Div Canc Treatment & Diag, Bethesda, MD USA
[6] Takeda Pharmaceut Amer Inc, Data Sci Inst, Stat & Quantitat Sci, Lexington, MA USA
[7] Oregon Hlth & Sci Univ, Dept Diagnost Radiol, Portland, OR USA
[8] Univ Wisconsin, Dept Med Phys, Madison, WI USA
[9] Inst Canc Res, Div Radiother apy & Imaging, London, England
[10] European Soc Radiol ESR, European Imaging Biomarkers Alliance EIBALL, Vienna, Austria
[11] Cleveland Clin, Dept Quantitat Hlth Sci, Lerner Res Inst, Cleveland, OH USA
关键词
phenotype classification; multiparametric classification; multi-class classification; multi-parametric quantitative imaging bio-markers (mp-QIBs); QIBA; TECHNICAL PERFORMANCE; STATISTICAL-METHODS; INCREMENTAL VALUE; TESTS; ACCURACY; MODELS; ELASTOGRAPHY; RADIOLOGISTS; TERMINOLOGY; FIBROSIS;
D O I
10.1016/j.acra.2022.09.004
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
This manuscript is the third in a five-part series related to statistical assessment methodology for technical performance of multi-paramet-ric quantitative imaging biomarkers (mp-QIBs). We outline approaches and statistical methodologies for developing and evaluating a phe-notype classification model from a set of multiparametric QIBs. We then describe validation studies of the classifier for precision, diagnostic accuracy, and interchangeability with a comparator classifier. We follow with an end-to-end real-world example of develop-ment and validation of a classifier for atherosclerotic plaque phenotypes. We consider diagnostic accuracy and interchangeability to be clinically meaningful claims for a phenotype classification model informed by mp-QIB inputs, aiming to provide tools to demonstrate agreement between imaging-derived characteristics and clinically established phenotypes. Understanding that we are working in an evolving field, we close our manuscript with an acknowledgement of existing challenges and a discussion of where additional work is needed. In particular, we discuss the challenges involved with technical performance and analytical validation of mp-QIBs. We intend for this manuscript to further advance the robust and promising science of multiparametric biomarker development.
引用
收藏
页码:183 / 195
页数:13
相关论文
共 93 条
[1]   APPLYING R2-TYPE MEASURES TO ORDERED CATEGORICAL-DATA [J].
AGRESTI, A .
TECHNOMETRICS, 1986, 28 (02) :133-138
[2]  
Agresti A, 1992, Stat Methods Med Res, V1, P201, DOI 10.1177/096228029200100205
[3]  
Agresti A., 2001, Categorical Data Analysis, DOI DOI 10.1002/0471249688
[4]   STATISTICS NOTES - DIAGNOSTIC-TESTS-1 - SENSITIVITY AND SPECIFICITY .3. [J].
ALTMAN, DG ;
BLAND, JM .
BRITISH MEDICAL JOURNAL, 1994, 308 (6943) :1552-1552
[5]   DIAGNOSTIC-TESTS-2 - PREDICTIVE VALUES .4. [J].
ALTMAN, DG ;
BLAND, JM .
BRITISH MEDICAL JOURNAL, 1994, 309 (6947) :102-102
[6]   DIAGNOSTIC-TESTS-3 - RECEIVER OPERATING CHARACTERISTIC PLOTS .7. [J].
ALTMAN, DG ;
BLAND, JM .
BRITISH MEDICAL JOURNAL, 1994, 309 (6948) :188-188
[7]  
Altman DG, 2000, STAT MED, V19, P453, DOI 10.1002/(SICI)1097-0258(20000229)19:4<453::AID-SIM350>3.3.CO
[8]  
2-X
[9]   Classification of Stroke Subtypes [J].
Amarenco, P. ;
Bogousslavsky, J. ;
Caplan, L. R. ;
Donnan, G. A. ;
Hennerici, M. G. .
CEREBROVASCULAR DISEASES, 2009, 27 (05) :493-501
[10]   Selection bias in gene extraction on the basis of microarray gene-expression data [J].
Ambroise, C ;
McLachlan, GJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (10) :6562-6566