MRI-based artificial intelligence to predict infection following total hip arthroplasty failure

被引:14
作者
Albano, Domenico [1 ]
Gitto, Salvatore [2 ]
Messina, Carmelo [1 ,2 ]
Serpi, Francesca [1 ,2 ]
Salvatore, Christian [3 ,4 ]
Castiglioni, Isabella [5 ,6 ]
Zagra, Luigi [7 ]
De Vecchi, Elena [8 ]
Sconfienza, Luca Maria [1 ,2 ]
机构
[1] IRCCS Ist Ortoped Galeazzi, Un Operativa Radiol Diagnostica&Interventist, I-20161 Milan, Italy
[2] Univ Milan, Dipartimento Sci Biomed Salute, I-20133 Milan, Italy
[3] DeepTrace Technol S, RL, Milan, Italy
[4] Univ Sch Adv Studies IUSS Pavia, Dept Sci Technol & Soc, Pavia, Italy
[5] Univ Milano Bicocca, Dept Phys, I-20126 Milan, Italy
[6] Inst Biomed Imaging & Physiol, Consiglio Nazl Ric, I-20090 Segrate, Italy
[7] IRCCS Ist Ortoped Galeazzi, Hip Dept, I-20161 Milan, Italy
[8] IRCCS Ist Ortoped Galeazzi, Lab Clin Chem & Microbiol, I-20161 Milan, Italy
来源
RADIOLOGIA MEDICA | 2023年 / 128卷 / 03期
关键词
Artificial intelligence; Machine learning; Magnetic resonance imaging; Total hip arthroplasty; Infection; Bone edema; SEQUENCES; SYNOVITIS;
D O I
10.1007/s11547-023-01608-7
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
PurposeTo investigate whether artificial intelligence (AI) can differentiate septic from non-septic total hip arthroplasty (THA) failure based on preoperative MRI features.Materials and methodsWe included 173 patients (98 females, age: 67 +/- 12 years) subjected to first-time THA revision surgery after preoperative pelvis MRI. We divided the patients into a training/validation/internal testing cohort (n = 117) and a temporally independent external-testing cohort (n = 56). MRI features were used to train, validate and test a machine learning algorithm based on support vector machine (SVM) to predict THA infection on the training-internal validation cohort with a nested fivefold validation approach. Machine learning performance was evaluated on independent data from the external-testing cohort.ResultsMRI features were significantly more frequently observed in THA infection (P < 0.001), except bone destruction, periarticular soft-tissue mass, and fibrous membrane (P > 0.005). Considering all MRI features in the training/validation/internal-testing cohort, SVM classifier reached 92% sensitivity, 62% specificity, 79% PPV, 83% NPV, 82% accuracy, and 81% AUC in predicting THA infection, with bone edema, extracapsular edema, and synovitis having been the best predictors. After being tested on the external-testing cohort, the classifier showed 92% sensitivity, 79% specificity, 89% PPV, 83% NPV, 88% accuracy, and 89% AUC in predicting THA infection. SVM classifier showed 81% sensitivity, 76% specificity, 66% PPV, 88% NPV, 80% accuracy, and 74% AUC in predicting THA infection in the training/validation/internal-testing cohort based on the only presence of periprosthetic bone marrow edema on MRI, while it showed 68% sensitivity, 89% specificity, 93% PPV, 60% NPV, 75% accuracy, and 79% AUC in the external-testing cohort.ConclusionAI using SVM classifier showed promising results in predicting THA infection based on MRI features. This model might support radiologists in identifying THA infection.
引用
收藏
页码:340 / 346
页数:7
相关论文
共 27 条
[1]   Whole-body MRI radiomics model to predict relapsed/refractory Hodgkin Lymphoma: A preliminary study [J].
Albano, Domenico ;
Cuocolo, Renato ;
Patti, Caterina ;
Ugga, Lorenzo ;
Chianca, Vito ;
Tarantino, Vittoria ;
Faraone, Roberta ;
Albano, Silvia ;
Micci, Giuseppe ;
Costa, Alessandro ;
Paratore, Rosario ;
Ficola, Umberto ;
Lagalla, Roberto ;
Midiri, Massimo ;
Galia, Massimo .
MAGNETIC RESONANCE IMAGING, 2022, 86 :55-60
[2]  
Albano D, 2021, RADIOLOGY, V299, pE283, DOI 10.1148/radiol.2021204146
[3]   Failed Total Hip Arthroplasty: Diagnostic Performance of ConventionalMRIFeatures and Locoregional Lymphadenopathy to Identify Infected Implants [J].
Albano, Domenico ;
Messina, Carmelo ;
Zagra, Luigi ;
Andreata, Mauro ;
De Vecchi, Elena ;
Gitto, Salvatore ;
Sconfienza, Luca M. .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2021, 53 (01) :201-210
[4]  
[Anonymous], Le Trac
[5]   Position paper on magnetic resonance imaging protocols in the musculoskeletal system (excluding the spine) by the Italian College of Musculoskeletal Radiology [J].
Bellelli, Alberto ;
Silvestri, Enzo ;
Barile, Antonio ;
Albano, Domenico ;
Aliprandi, Alberto ;
Caudana, Roberto ;
Chianca, Vito ;
Di Pietto, Francesco ;
Faletti, Carlo ;
Genovese, Eugenio ;
Giovagnoni, Andrea ;
Masciocchi, Carlo ;
Messina, Carmelo ;
Sconfienza, Luca Maria ;
Spina, Vincenzo ;
Zappia, Marcello .
RADIOLOGIA MEDICA, 2019, 124 (06) :522-538
[6]   Metal Artefact Reduction Sequences (MARS) in Magnetic Resonance Imaging (MRI) after Total Hip Arthroplasty (THA) A non-invasive approach for preoperative differentiation between periprosthetic joint infection (PJI) and aseptic complications? [J].
Busch, Andre ;
Jager, Marcus ;
Beck, Sascha ;
Wegner, Alexander ;
Portegys, Erik ;
Wassenaar, Dennis ;
Theysohn, Jens ;
Haubold, Johannes .
BMC MUSCULOSKELETAL DISORDERS, 2022, 23 (01)
[7]   Artificial intelligence: radiologists' expectations and opinions gleaned from a nationwide online survey [J].
Coppola, Francesca ;
Faggioni, Lorenzo ;
Regge, Daniele ;
Giovagnoni, Andrea ;
Golfieri, Rita ;
Bibbolino, Corrado ;
Miele, Vittorio ;
Neri, Emanuele ;
Grassi, Roberto .
RADIOLOGIA MEDICA, 2021, 126 (01) :63-71
[8]   Diagnosis of Periprosthetic Hip Joint Infection Using MRI with Metal Artifact Reduction at 1.5 T [J].
Galley, Julien ;
Sutter, Reto ;
Stern, Christoph ;
Filli, Lukas ;
Rahm, Stefan ;
Pfirrmann, Christian W. A. .
RADIOLOGY, 2020, 296 (01) :98-108
[9]   Diffusion-weighted MRI radiomics of spine bone tumors: feature stability and machine learning-based classification performance [J].
Gitto, Salvatore ;
Bologna, Marco ;
Corino, Valentina D. A. ;
Emili, Ilaria ;
Albano, Domenico ;
Messina, Carmelo ;
Armiraglio, Elisabetta ;
Parafioriti, Antonina ;
Luzzati, Alessandro ;
Mainardi, Luca ;
Sconfienza, Luca Maria .
RADIOLOGIA MEDICA, 2022, 127 (05) :518-525
[10]   Artificial intelligence for image analysis in total hip and total knee arthroplasty [J].
Gurung, B. ;
Liu, P. ;
Harris, P. D. R. ;
Sagi, A. ;
Field, R. E. ;
Sochart, D. H. ;
Tucker, K. ;
Asopa, V .
BONE & JOINT JOURNAL, 2022, 104B (08) :929-937