Nuclear magnetic resonance study on enhanced shale oil recovery by CO2 injection: A case study

被引:1
作者
Gong, Houjian [1 ,2 ,3 ]
Qin, Xuejie [1 ]
Pu, Jun [1 ]
Lv, Wei [2 ]
Xu, Long [2 ]
机构
[1] SINOPEC, State Energy Ctr Shale Oil Res & Dev, Beijing, Peoples R China
[2] China Univ Petr East China, Sch Petr Engn, Qingdao, Peoples R China
[3] China Univ Petr East China, Sch Petr Engn, 66 Changjiang West Rd, Qingdao 266580, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Shale oil; CO2; injection; huff-n-puff; NMR; ADSORPTION; RESERVOIRS; SIMULATION;
D O I
10.1080/15567036.2023.2172480
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The successful development of shale oil is significant to provide oil steadily. The comparisons of enhanced shale oil recovery by CO2 flooding and huff-n-puff methods for shale cores without and with fractures were investigated by nuclear magnetic resonance (NMR) spectra and physical simulation experiments. The effects of injection pressure and injection amount on enhanced shale oil recovery by CO2 flooding were considered, as well as the displacement mechanism of oil at different sections of the core. With the increases of injection pressure and injected PV, the oil recovery of CO2 flooding increases while the utilization efficiency decreases. The oil recoveries of CO2 with 2PV are 14% and 23% at 9 and 18 MPa, meanwhile, the values of the produced oil amount per mole of CO2 are 7% and 5% at 9 and 18 MPa. The oil content near the inlet of the core decreases greatly with the increasing PV while the oil content near the outlet has a slight decrease. After CO2 injection of 7 PV, the oil content near the outlet is still as high as 80%. Moreover, the factors of pressure, cycles, and soaking time were examined for CO2 huff-n-puff. The oil recovery increases while the utilization efficiency decreases with the increasing pressure and cycles in CO2 huff-n-puff. The total oil recoveries after three cycles are 56% and 69% at 9 and 20 MPa, while the values of the produced oil amount per mole of CO2 are 42% and 20%. With the increase of cycle, the swept area increases and the displacement efficiency of the swept core has a great enhancement. Compared with CO2 flooding, CO2 huff-n-puff method has greater oil recovery and CO2 utilization efficiency because of the sufficient contacting time between oil and CO2 and high swept ability. Therefore, CO2 huff-n-puff is beneficial for shale oil production. This work can provide the optimized method and parameters for the production in Enan Chang 7 zone.
引用
收藏
页码:678 / 689
页数:12
相关论文
共 50 条
  • [41] Simulation Study on Miscibility Effect of CO2/Solvent Injection for Enhanced Oil Recovery at Nonisothermal Conditions
    Jeong, Moon Sik
    Lee, Kun Sang
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2016, 2016
  • [42] Experimental evaluation of enhanced shale oil recovery in pore scale by CO2 in Jimusar reservoir
    Wan, Tao
    Zhang, Jing
    Jing, Ziyan
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 208
  • [43] Intermittent CO2 and viscosity-reducing gas (VRG) injection for enhanced heavy oil recovery
    Seyyedsar, Seyyed Mehdi
    Sohrabi, Mehran
    FUEL PROCESSING TECHNOLOGY, 2017, 164 : 1 - 12
  • [44] Molecular insight into the oil displacement mechanism of CO2 flooding in the nanopores of shale oil reservoir
    Dong, Xiao-Hu
    Xu, Wen-Jing
    Liu, Hui-Qing
    Chen, Zhang-Xing
    Lu, Ning
    PETROLEUM SCIENCE, 2023, 20 (06) : 3516 - 3529
  • [45] CO2 Foam and CO2 Polymer Enhanced Foam for Heavy Oil Recovery and CO2 Storage
    Telmadarreie, Ali
    Trivedi, Japan J.
    ENERGIES, 2020, 13 (21)
  • [46] Compositional Modeling of Impure CO2 Injection for Enhanced Oil Recovery and CO2 Storage
    Lee, Hye-Seung
    Cho, Jinhyung
    Lee, Young-Woo
    Lee, Kun-Sang
    APPLIED SCIENCES-BASEL, 2021, 11 (17):
  • [47] Experimental study of CO2 solubility on the oil recovery enhancement of heavy oil reservoirs
    Davarpanah, Afshin
    Mirshekari, Behnam
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2020, 139 (02) : 1161 - 1169
  • [48] Synergistic Effects between Supercritical CO2 and Diluted Microemulsion on Enhanced Oil Recovery in Shale Oil Reservoirs
    Yuan, Shuai
    Wang, Bin
    Yang, Maoqin
    Zheng, Leyi
    Liu, Hao
    Li, Yuan
    Zhou, Fujian
    Liang, Tianbo
    SPE JOURNAL, 2025, 30 (01): : 295 - 309
  • [49] On the CO2 storage potential of cyclic CO2 injection process for enhanced oil recovery
    Abedini, Ali
    Torabi, Farshid
    FUEL, 2014, 124 : 14 - 27
  • [50] Comparative Study on the Macroscopic Exploitation and Microscopic Mobilization Characteristics of CO2 and N2 HnP to Enhance Shale Oil Recovery
    Liu, Feng
    Kang, Yong
    Zhang, Mengda
    Hu, Yi
    Huang, Yong
    Li, Lian
    Pan, Haizeng
    ENERGY & FUELS, 2024, 38 (07) : 5974 - 5987