MELANOMA AUTOMATED DETECTION SYSTEM INTEGRATED WITH AN EHR PLATFORM

被引:0
作者
Stefan, Ana - Maria [1 ]
El-Khatib, Hassan [2 ]
Popescu, Dan [2 ]
机构
[1] Natl Univ Sci & Technol POLITEHN, Dept Elect Telecommun & Informat Technol, Bucharest, Romania
[2] Natl Univ Sci & Technol POLITEHN, Dept Automat Control & Ind Informat, Bucharest, Romania
来源
UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN SERIES C-ELECTRICAL ENGINEERING AND COMPUTER SCIENCE | 2024年 / 86卷 / 01期
关键词
electronic health record; automated melanoma detection system; classification model;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Early melanoma detection is vital for improved treatment outcomes and reduced mortality. This paper proposes integrating an automated melanoma detection system into the Electronic Health Record, offering benefits like seamless screening during routine medical visits, enhancing early lesion detection. The system's efficiency allows providers to focus on patient care, while real-time alerts ensure timely follow-up. Patient engagement promotes proactive skin health. Interoperability within the EHR facilitates comprehensive care, resulting in better outcomes, reduced costs, and proactive prevention.
引用
收藏
页码:57 / 68
页数:12
相关论文
共 22 条
[11]   Cost-of-illness of melanoma in Europe - a systematic review of the published literature [J].
Krensel, M. ;
Schaefer, I. ;
Augustin, M. .
JOURNAL OF THE EUROPEAN ACADEMY OF DERMATOLOGY AND VENEREOLOGY, 2019, 33 (03) :504-510
[12]  
Lideikaite Andre, 2017, Acta Med Litu, V24, P25, DOI 10.6001/actamedica.v24i1.3460
[13]   Computer-aided Diagnosis of Melanoma: A Review of Existing Knowledge and Strategies [J].
Maiti, Ananjan ;
Chatterjee, Biswajoy ;
Ashour, Amira S. ;
Dey, Nilanjan .
CURRENT MEDICAL IMAGING, 2020, 16 (07) :835-854
[14]  
Malmqvist L., Architecting AI Solutions on Salesforce: Design powerful and accurate AIdriven state-of-the-art solutions tailor-made for modern business demands
[15]  
Mendonça T, 2013, IEEE ENG MED BIO, P5437
[16]  
Menegola A., 2017, Archives of Dermatological Research
[17]   ABCD rule and pre-trained CNNs for melanoma diagnosis [J].
Moura, Nayara ;
Veras, Rodrigo ;
Aires, Kelson ;
Machado, Vinicius ;
Silva, Romuere ;
Araujo, Flavio ;
Claro, Maila .
MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (06) :6869-6888
[18]   Machine learning approach in melanoma cancer stage detection [J].
Patil, Rashmi ;
Bellary, Sreepathi .
JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2022, 34 (06) :3285-3293
[19]   Skin Self-Examination Education for Early Detection of Melanoma: A Randomized Controlled Trial of Internet, Workbook, and In-Person Interventions [J].
Robinson, June K. ;
Gaber, Rikki ;
Hultgren, Brittney ;
Eilers, Steven ;
Blatt, Hanz ;
Stapleton, Jerod ;
Mallett, Kimberly ;
Turrisi, Rob ;
Duffecy, Jenna ;
Begale, Mark ;
Martini, Mary ;
Bilimoria, Karl ;
Wayne, Jeffrey .
JOURNAL OF MEDICAL INTERNET RESEARCH, 2014, 16 (01)
[20]  
Ward WH., 2017, Cutaneous Melanoma Etiology and Therapy