Evaluation of Machine Learning Models for Ozone Concentration Forecasting in the Metropolitan Valley of Mexico

被引:6
作者
Dominguez-Garcia, Rodrigo [1 ]
Arellano-Vazquez, Magali [2 ]
机构
[1] Ctr Res Adv Mat, Ave Miguel de Cervantes Saavedra 120, Chihuahua 31136, Mexico
[2] INFOTEC Ctr Res & Innovat Informat & Commun Techno, Circuito Tecnopolo Sur 112, Aguascalientes 20313, Mexico
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 04期
关键词
gradient boosting; machine learning; ozone forecasting; random forest; support vector regression; LONG-TERM EXPOSURE;
D O I
10.3390/app14041408
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In large and densely populated cities, the concentration of pollutants such as ozone and its dispersion is related to effects on people's health; therefore, its forecast is of great importance to the government and the population. Given the increased computing capacity that allows for processing massive amounts of data, the use of machine learning (ML) as a tool for air quality analysis and forecasting has gotten a significant boost. This research focuses on evaluating different models, such as Random Forest (RF), Support Vector Regression (SVR), and Gradient Boosting (GB), to forecast ozone (O3) concentration 24 h in advance, using data from the Mexico City Atmospheric Monitoring System using meteorological variables that influence the phenomenon of ozone dispersion and formation.
引用
收藏
页数:18
相关论文
共 27 条
[1]  
Abdiansah A, 2015, INT J COMPUT APPL, V128, P28
[2]  
Aditya C, 2018, INT J ENG TRENDS TEC, DOI [10.14445/22315381/IJETT-V59P238, DOI 10.14445/22315381/IJETT-V59P238]
[3]   A machine learning approach to investigate the build-up of surface ozone in Mexico-City [J].
Ahmad, M. ;
Rappengluck, B. ;
Osibanjo, O. O. ;
Retama, A. .
JOURNAL OF CLEANER PRODUCTION, 2022, 379
[4]   Ground-level Ozone Prediction Using Machine Learning Techniques: A Case Study in Amman, Jordan [J].
Aljanabi, Maryam ;
Shkoukani, Mohammad ;
Hijjawi, Mohammad .
INTERNATIONAL JOURNAL OF AUTOMATION AND COMPUTING, 2020, 17 (05) :667-677
[5]  
Balajee K. L., 2017, International Journal of Medicine and Public Health, V7, P56, DOI 10.5530/ijmedph.2017.1.10
[6]   Air quality data from large cities [J].
Baldasano, JM ;
Valera, E ;
Jiménez, P .
SCIENCE OF THE TOTAL ENVIRONMENT, 2003, 307 (1-3) :141-165
[7]  
CDMX G, 2003, Direccion de Monitoreo Atmosferico
[8]  
Cochran WG., 1977, Sampling Techniques, V3rd ed
[9]  
Contreras-Ochando L, 2016, INT CONF DAT MIN WOR, P1296, DOI [10.1109/ICDMW.2016.0188, 10.1109/ICDMW.2016.180]
[10]   An ensemble-based model of PM2.5 concentration across the contiguous United States with high spatiotemporal resolution [J].
Di, Qian ;
Amini, Heresh ;
Shi, Liuhua ;
Kloog, Itai ;
Silvern, Rachel ;
Kelly, James ;
Sabath, M. Benjamin ;
Choirat, Christine ;
Koutrakis, Petros ;
Lyapustin, Alexei ;
Wang, Yujie ;
Mickley, Loretta J. ;
Schwartz, Joel .
ENVIRONMENT INTERNATIONAL, 2019, 130