Constraints on cosmologically coupled black holes from gravitational wave observations and minimal formation mass

被引:9
作者
Amendola, Luca [1 ,2 ]
Rodrigues, Davi C. [1 ,2 ,3 ]
Kumar, Sumit [4 ,5 ]
Quartin, Miguel [3 ,6 ,7 ]
机构
[1] Heidelberg Univ, Inst Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany
[2] Univ Espirito Santo, Dept Fis & Cosmoufes, BR-29075910 Vitoria, ES, Brazil
[3] Univ Fed Espirito Santo, PPGCosmo, BR-29075910 Vitaria, ES, Brazil
[4] Albert Einstein Inst, Max Planck Inst Gravitationsphys, D-30167 Hannover, Germany
[5] Leibniz Univ Hannover, D-30167 Hannover, Germany
[6] Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio De Janeiro, Brazil
[7] Univ Rio Janeiro, Observat Valongo, BR-20080090 Rio De Janeiro, RJ, Brazil
关键词
black hole physics; gravitational waves; dark energy; COMPACT OBJECTS; NEUTRON-STAR; SYMMETRY; PRESSURE; GALAXIES;
D O I
10.1093/mnras/stae143
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We test the possibility that the black holes (BHs) detected by LIGO-Virgo-KAGRA (LVK) may be cosmologically coupled and grow in mass proportionally to the cosmological scale factor to some power k, which may also act as the dark energy source if k approximate to 3. This approach was proposed as an extension of Kerr BHs embedded in cosmological backgrounds and possibly without singularities or horizons. In our analysis, we develop and apply two methods to test these cosmologically coupled BHs (CCBHs) either with or without connection to dark energy. We consider different scenarios for the time between the binaryBH formation and its merger, and we find that the standard log-uniform distribution yields weaker constraints than the CCBH-corrected case. Assuming that the minimum mass of a BH with stellar progenitor is 2 M-circle dot, we estimate the probability that at least one BH among the observed ones had an initial mass below this threshold. We obtain these probabilities either directly from the observed data or by assuming the LVK power-law-plus-peak mass distribution. In the latter case, we find at 2 sigma level, that k < 2.1 for the standard log-uniform distribution, or k < 1.1 for the CCBH-corrected distribution. Slightly weaker bounds are obtained in the direct method. Considering the uncertainties on the nature ofCCBHs, we also find that the required minimum CCBH mass value to eliminate the tensions for k = 3 should be lower than 0.5 M-circle dot (again at 2 sigma). Finally, we show that future observations have the potential to decisively confirm these bounds.
引用
收藏
页码:2377 / 2390
页数:14
相关论文
共 45 条
[1]   GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abraham, S. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, G. ;
Allocca, A. ;
Aloy, M. A. ;
Altin, P. A. ;
Amato, A. ;
Ananyeva, A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Angelova, S., V ;
Antier, S. ;
Appert, S. ;
Arai, K. ;
Araya, M. C. ;
Areeda, J. S. ;
Arene, M. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Aston, S. M. ;
Astone, P. ;
Aubin, F. ;
Aufmuth, P. ;
AultONeal, K. ;
Austin, C. ;
Avendano, V ;
Avila-Alvarez, A. ;
Babak, S. ;
Bacon, P. ;
Badaracco, F. ;
Bader, M. K. M. ;
Bae, S. ;
Baker, P. T. .
PHYSICAL REVIEW X, 2019, 9 (03)
[2]   GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo during the Second Part of the Third Observing Run [J].
Abbott, R. ;
Abbott, T. D. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adhikari, N. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agarwal, D. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Akcay, S. ;
Akutsu, T. ;
Albanesi, S. ;
Allocca, A. ;
Altin, P. A. ;
Amato, A. ;
Anand, C. ;
Anand, S. ;
Ananyeva, A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Ando, M. ;
Andrade, T. ;
Andres, N. ;
Andric, T. ;
Angelova, S., V ;
Ansoldi, S. ;
Antelis, J. M. ;
Antier, S. ;
Appert, S. ;
Arai, Koji ;
Arai, Koya ;
Arai, Y. ;
Araki, S. ;
Araya, A. ;
Araya, M. C. ;
Areeda, J. S. ;
Arene, M. ;
Aritomi, N. ;
Arnaud, N. ;
Arogeti, M. ;
Aronson, S. M. ;
Arun, K. G. .
PHYSICAL REVIEW X, 2023, 13 (04)
[3]   Population of Merging Compact Binaries Inferred Using Gravitational Waves through GWTC-3 [J].
Abbott, R. ;
Abbott, T. D. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adhikari, N. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agarwal, D. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Akutsu, T. ;
de Alarcon, P. F. ;
Akcay, S. ;
Albanesi, S. ;
Allocca, A. ;
Altin, P. A. ;
Amato, A. ;
Anand, C. ;
Anand, S. ;
Ananyeva, A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Ando, M. ;
Andrade, T. ;
Andres, N. ;
Andric, T. ;
Angelova, S. V. ;
Ansoldi, S. ;
Antelis, J. M. ;
Antier, S. ;
Antonini, F. ;
Appert, S. ;
Arai, Koji ;
Arai, Koya ;
Arai, Y. ;
Araki, S. ;
Araya, A. ;
Araya, M. C. ;
Areeda, J. S. ;
Arene, M. ;
Aritomi, N. ;
Arnaud, N. ;
Arogeti, M. .
PHYSICAL REVIEW X, 2023, 13 (01)
[4]   Upper limits on the isotropic gravitational-wave background from Advanced LIGO and Advanced Virgo's third observing run [J].
Abbott, R. ;
Abbott, T. D. ;
Abraham, S. ;
Acernese, F. ;
Ackley, K. ;
Adams, A. ;
Adams, C. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agarwal, D. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Akutsu, T. ;
Aleman, K. M. ;
Allen, G. ;
Allocca, A. ;
Altin, P. A. ;
Amato, A. ;
Anand, S. ;
Ananyeva, A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Ando, M. ;
Angelova, S., V ;
Ansoldi, S. ;
Antelis, J. M. ;
Antier, S. ;
Appert, S. ;
Arai, Koya ;
Arai, Koji ;
Arai, Y. ;
Araki, S. ;
Araya, A. ;
Araya, M. C. ;
Areeda, J. S. ;
Arene, M. ;
Aritomi, N. ;
Arnaud, N. ;
Aronson, S. M. ;
Asada, H. ;
Asali, Y. ;
Ashton, G. ;
Aso, Y. ;
Aston, S. M. ;
Astone, P. .
PHYSICAL REVIEW D, 2021, 104 (02)
[5]  
Abbott R., 2022, arXiv
[6]  
Abbott R., 2021, ASTROPHYS J LETT, V913, pL7, DOI DOI 10.3847/2041-8213/ac2fa0
[7]   The Kerr-de Sitter universe [J].
Akcay, Sarp ;
Matzner, Richard A. .
CLASSICAL AND QUANTUM GRAVITY, 2011, 28 (08)
[8]   Constraints on the cosmological coupling of black holes from Gaia [J].
Andrae, Rene ;
El-Badry, Kareem .
ASTRONOMY & ASTROPHYSICS, 2023, 673
[9]   Can gravitational vacuum condensate stars be a dark energy source? [J].
Avelino, P. P. .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2023, (08)
[10]   The first gravitational-wave source from the isolated evolution of two stars in the 40-100 solar mass range [J].
Belczynski, Krzysztof ;
Holz, Daniel E. ;
Bulik, Tomasz ;
O'Shaughnessy, Richard .
NATURE, 2016, 534 (7608) :512-+