A WEAK LAW OF LARGE NUMBERS FOR DEPENDENT RANDOM VARIABLES

被引:1
作者
Karatzas, I. [1 ,2 ]
Schachermayer, W. [3 ]
机构
[1] Columbia Univ, Dept Math, New York, NY 10027 USA
[2] Columbia Univ, Dept Stat, New York, NY 10027 USA
[3] Univ Vienna, Fac Math, Vienna, Austria
基金
美国国家科学基金会; 奥地利科学基金会;
关键词
weak law of large numbers; hereditary convergence; weak convergence; truncation; generalized expectation; nonlinear expectation;
D O I
10.1137/S0040585X97T991593
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Each sequence f(1), f(2),... of random variables satisfying lim(M ->infinity)(M sup(k is an element of N)P(vertical bar f(k)vertical bar > M)) = 0 contains a subsequence f(k1), f(k2), ... which, along with all its subsequences, satisfies the weak law of large numbers lim(N ->infinity) ((1/N) Sigma(N)(n=1) f(kn) - D-N) = 0 in probability. Here, DN is a "corrector" random variable with values in [-N, N] for each N is an element of N; these correctors are all equal to zero if, in addition, lim inf(n ->infinity) E(f(n)(2) 1({broken vertical bar fn broken vertical bar <= M})) = 0 for every M is an element of (0, infinity).
引用
收藏
页码:501 / 509
页数:9
相关论文
共 18 条
[1]   LIMIT-THEOREMS FOR SUBSEQUENCES OF ARBITRARILY-DEPENDENT SEQUENCES OF RANDOM-VARIABLES [J].
ALDOUS, DJ .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1977, 40 (01) :59-82
[2]  
[Anonymous], 1930, Uber die Summen zufalliger Grossen, V102, P484, DOI [10.1007/BF01782357, DOI 10.1007/BF01782357]
[3]   EXCHANGEABLE RANDOM-VARIABLES AND THE SUBSEQUENCE PRINCIPLE [J].
BERKES, I ;
PETER, E .
PROBABILITY THEORY AND RELATED FIELDS, 1986, 73 (03) :395-413
[4]  
CHATTERJI S. D., 1985, Jahresber. Deutsch. Math.-Verein., V87, P91
[5]  
Chatterji S.D., 1972, Sminaire de Probabilits VI, Universit de Strasbourg, VVolume 258, P72
[6]  
CHUNG K. L., 1974, Probab. Math. Statist., V21
[7]  
DELLACHERIE C., 1980, Actualites Sci. Indust., V1385
[8]  
Durrett R., 2010, Probability: Theory and Examples, DOI DOI 10.1017/CBO9780511779398
[9]  
Feller W., 1971, An Introduction to Probability Theory and Its Applications, DOI DOI 10.2307/2282584
[10]  
Gnedenko B. V., 1954, Limit distributions for sums of independent random variables