VOXEL-LEVEL FMRI ANALYSIS BY REPRESENTATION LEARNING AND DEEP CLUSTERING FOR ALZHEIMER'S DISEASE

被引:0
作者
Ding, Zhiyuan [1 ]
Lu, Wenjing [2 ]
Wang, Ling [3 ]
Zeng, Xiangzhu [4 ]
Zhao, Tong [5 ]
Tian, Xu [6 ]
Wang, Zeng [4 ]
Liu, Yan [6 ]
机构
[1] Johns Hopkins Univ, Baltimore, MD USA
[2] Shanghai Jiao Tong Univ, Shanghai, Peoples R China
[3] Univ Elect Sci & Technol China, Chengdu, Peoples R China
[4] Peking Univ Third Hosp, Beijing, Peoples R China
[5] Shandong Univ, Jinan, Peoples R China
[6] Univ Chinese Acad Sci, Beijing, Peoples R China
来源
2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI | 2023年
关键词
Weakly-supervised Representation Learning; Deep Clustering; GNN; fMRI; Alzheimer's Disease;
D O I
10.1109/ISBI53787.2023.10230585
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the progression of neurodegenerative disease, functional connectivity between brain regions has changed, which can be reflected locally by Blood-oxygen-level-dependent (BOLD) signal measured in functional magnetic resonance imaging (fMRI). Most studies assume BOLD signals are homogeneous within brain regions, ignoring voxel-level changes. In this paper, we propose a novel framework for voxel-based feature extraction and recollection to characterize the BOLD signal and analyze the functional connectivity of brain networks and uncover biomarkers for abnormalities. Specifically, a weakly-supervised learning strategy is adopted to extract discriminative representation from original BOLD signals. Considering the heterogeneity of BOLD signals within brain regions of interest (ROIs), we employ an unsupervised-based deep clustering method to automatically recollect features to different clusters. Experiments on Alzheimer's Disease (AD) recognition using Graph neural network (GNN) validate the effectiveness of our framework. To the best of our knowledge, this is the first work to consider BOLD signal heterogeneity for feature extraction to measure functional connectivity in GNN, which provides a voxel-level scenario that can be migrated to other tasks.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Deep Learning with Neuroimaging and Genomics in Alzheimer's Disease
    Lin, Eugene
    Lin, Chieh-Hsin
    Lane, Hsien-Yuan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (15)
  • [22] Multiclass Diagnosis of Alzheimer's Disease Analysis Using Machine Learning and Deep Learning Techniques
    Begum, Afiya Parveen
    Selvaraj, Prabha
    INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2024, 24 (03)
  • [23] Resting-state fMRI Analysis of Alzheimer's Disease Progress Using Sparse Dictionary Learning
    Lee, Jeonghyeon
    Ye, Jong Chul
    PROCEEDINGS 2012 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2012, : 1051 - 1053
  • [24] Evaluation of Different Stages of Alzheimer's Disease Using Unsupervised Clustering Techniques and Voxel Based Morphometry
    Varghese, Tinu
    Sheela, Kumari R.
    Mathuranath, P. S.
    Singh, Albert
    PROCEEDINGS OF THE 2012 WORLD CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGIES, 2012, : 953 - 958
  • [25] GROUP SPARSE DICTIONARY LEARNING AND INFERENCE FOR RESTING-STATE FMRI ANALYSIS OF ALZHEIMER'S DISEASE
    Lee, Jeonghyeon
    Jeong, Yong
    Ye, Jong Chul
    2013 IEEE 10TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2013, : 540 - 543
  • [26] Research on Pathogenic Hippocampal Voxel Detection in Alzheimer's Disease Using Clustering Genetic Random Forest
    Liu, Wenjie
    Cao, Luolong
    Luo, Haoran
    Wang, Ying
    FRONTIERS IN PSYCHIATRY, 2022, 13
  • [27] Classification and analysis of Alzheimer's Disease using Deep Learning methods on MRI and PET
    Antony, Febin
    Anita, H. B.
    2022 5TH INTERNATIONAL CONFERENCE ON MULTIMEDIA, SIGNAL PROCESSING AND COMMUNICATION TECHNOLOGIES (IMPACT), 2022,
  • [28] Early Diagnosis of Alzheimer's Disease Using Deep Learning
    Ji, Huanhuan
    Liu, Zhenbing
    Yan, Wei Qi
    Klette, Reinhard
    ICCCV 2019: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON CONTROL AND COMPUTER VISION, 2019, : 87 - 91
  • [29] Deep Learning Approach for Early Detection of Alzheimer’s Disease
    Hadeer A. Helaly
    Mahmoud Badawy
    Amira Y. Haikal
    Cognitive Computation, 2022, 14 : 1711 - 1727
  • [30] Cognitive Reserve in Healthy Aging and Alzheimer's Disease: A Meta-Analysis of fMRI Studies
    Colangeli, Stefano
    Boccia, Maddalena
    Verde, Paola
    Guariglia, Paola
    Bianchini, Filippo
    Piccardi, Laura
    AMERICAN JOURNAL OF ALZHEIMERS DISEASE AND OTHER DEMENTIAS, 2016, 31 (05): : 443 - 449