A facile strategy to unlock the high capacity of vanadium-based cathode for aqueous zinc-ion batteries

被引:2
|
作者
Gou, Lin [1 ]
Zhao, Wentao [2 ]
Li, Huan [3 ]
Liu, Xingjiang [1 ,4 ]
Xu, Qiang [1 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Tianjin 300072, Peoples R China
[2] Tianjin Univ, Sch Sci, Tianjin 300072, Peoples R China
[3] Univ Adelaide, Sch Chem Engn, Adelaide, SA 5005, Australia
[4] Tianjin Inst Power Sources, Natl Key Lab Sci & Technol Power Sources, Tianjin 300384, Peoples R China
基金
中国国家自然科学基金;
关键词
Zinc-ion batteries; (NH4)(2)V6O16; Multi-walled carbon nanotube; Composite cathode; Electrochemical property; HIGH-PERFORMANCE CATHODE; CO-INTERCALATION; CONDUCTING POLYMER; STORAGE; OXIDE; KINETICS;
D O I
10.1007/s10008-023-05673-w
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
High-capacity cathode materials are highly important for aqueous zinc-ion batteries (ZIBs). However, the capacity output of cathode materials still remains far from their theoretical values. Herein, we report a facile strategy by integrating a small amount of multi-wall carbon nanotube (MWCNT) into (NH4)(2)V6O16 vanadium-based ammonium hexavanadate (NVO) that greatly improves the capacity for zinc-ion storage. Specifically, the NVO/MWCNT composite cathode presents a high specific capacity of 462.8 mAh g(-1) at 0.5 A g(-1) and 120.2 mAh g(-1) at 5 A g(-1) with excellent cyclic stability of 92.6% capacity retention after 1000 cycles. Additionally, the structural evolution of cathode material and zinc-ion storage mechanism are further analyzed with a series of voltage-dependent spectroscopic investigation. The performance improvement of NVO/MWCNT cathode is ascribed to the enlargement of interfacial area of NVO nanorods with the electrolyte and promotion of electron transfer within NVO cathode. This work gives a new approach for development of cathode material of ZIBs.
引用
收藏
页码:113 / 123
页数:11
相关论文
共 50 条
  • [31] Tunable Vanadium Oxide Microflowers as High-Capacity Cathode Materials for Aqueous Rechargeable Zinc-Ion Batteries
    Kidanu, Weldejewergis Gebrewahid
    Lim, Yeeun
    Nguyen, Tuan Loi
    Hur, Jaehyun
    Kim, Il Tae
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (11): : 14311 - 14322
  • [32] A high capacity TeO2 cathode for aqueous zinc-ion batteries
    Si, Jingying
    Lei, Qi
    Zhang, Wei
    Ren, Zhiguo
    Li, Haitao
    Lin, Mengru
    Wen, Wen
    Zhang, Jincang
    Feng, Zhenjie
    Sun, Yuanhe
    Li, Xiaolong
    Zhu, Daming
    MATERIALS LETTERS, 2024, 363
  • [33] Electrochemical activation of vanadium-based cathodes in aqueous zinc-ion batteries: Advances, challenges and prospects
    Liu, Shile
    Liao, Yanxin
    Liu, Tianrui
    Chen, Lingyun
    Zhang, Qichun
    ENERGY STORAGE MATERIALS, 2024, 73
  • [34] Low-current-density stability of vanadium-based cathodes for aqueous zinc-ion batteries
    Dou, Xinyue
    Xie, Xuefang
    Liang, Shuquan
    Fang, Guozhao
    SCIENCE BULLETIN, 2024, 69 (06) : 833 - 845
  • [35] Breaking the trade-off between capacity and stability in vanadium-based zinc-ion batteries
    Jiang, Weikang
    Zhu, Kaiyue
    Xie, Weili
    Wang, Zhengsen
    Ou, Zuqiao
    Yang, Weishen
    CHEMICAL SCIENCE, 2024, 15 (07) : 2601 - 2611
  • [36] High-Capacity and Long-Life Manganese Vanadium Oxide Composite as a Cathode for Aqueous Zinc-Ion Batteries
    Narsimulu, D.
    Krishna, B. N. Vamsi
    Shanthappa, R.
    Bandi, Hari
    Yu, Jae Su
    ADVANCED MATERIALS TECHNOLOGIES, 2023, 8 (18)
  • [37] Guest-species-incorporation in manganese/vanadium-based oxides: Towards high performance aqueous zinc-ion batteries
    Li, Yan
    Zhang, Daohong
    Huang, Shaozhuan
    Yang, Hui Ying
    NANO ENERGY, 2021, 85
  • [38] Influence of Polyvinyl Pyrrolidone (PVP) on Vanadium-based Compound Composite Performances for Aqueous Zinc-Ion Batteries
    Li, Shijia
    Qin, Liping
    Li, Lijun
    Cheng, Hao
    Fang, Guozhao
    Zhu, Qi
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2021, 16 (03): : 1 - 10
  • [39] Microwave-Assisted Rapid Hydrothermal Synthesis of Vanadium-Based Cathode: Unravelling Charge Storage Mechanisms in Aqueous Zinc-Ion Batteries
    Sariyer, Selin
    Keppetipola, Nilanka M.
    Sel, Ozlem
    Demir-Cakan, Rezan
    CHEMSUSCHEM, 2025,
  • [40] Granular Vanadium Nitride (VN) Cathode for High-Capacity and Stable Zinc-Ion Batteries
    Rong, Yao
    Chen, Hongzhe
    Wu, Jian
    Yang, Zhanhong
    Deng, Lie
    Fu, Zhimin
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2021, 60 (24) : 8649 - 8658