Describing geophysical turbulence with a Schrödinger-Coriolis equation in velocity space

被引:2
作者
de Montera, Louis [1 ]
Lehner, Thierry [1 ]
Mouhali, Waleed [2 ]
Nottale, Laurent [1 ]
机构
[1] Univ Paris Cite, Univ PSL, Observ Paris, Lab Univers & Theories,CNRS, F-92195 Meudon, France
[2] OMNES Educ, ECE, Paris, France
关键词
SCALE-RELATIVITY; QUANTIZATION; ACCELERATION;
D O I
10.1063/5.0176831
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper, we examine the predictions of the scale-relativity approach for a turbulent fluid in rotation. We first show that the time derivative of the governing Navier-Stokes equation in the usual x-space can be transformed into a Schrodinger-like equation in velocity space with an external vectorial field to account for the rotation, together with a local velocity harmonic oscillator (VHO) potential in the v-space. The coefficients of this VHO are given by the second order x-derivatives of the pressure. We can then give formulas for the velocity and acceleration probability distribution functions (PDF). Using a simple model of anisotropic harmonic oscillator, we compare our predictions with relevant data from both direct numerical simulations (DNS) and oceanic drifter velocity measurements. We find a good agreement of the predicted acceleration PDF with that observed from drifters and some possible support in DNS for the existence of gaps in the local velocity PDF, expected in the presence of a Coriolis force.
引用
收藏
页数:13
相关论文
共 33 条
[1]   TURBULENT SPECTRA IN A STABLY STRATIFIED ATMOSPHERE [J].
BOLGIANO, R .
JOURNAL OF GEOPHYSICAL RESEARCH, 1959, 64 (12) :2226-2229
[2]   Single-particle Lagrangian statistics from direct numerical simulations of rotating-stratified turbulence [J].
Buaria, D. ;
Pumir, A. ;
Feraco, F. ;
Marino, R. ;
Pouquet, A. ;
Rosenberg, D. ;
Primavera, L. .
PHYSICAL REVIEW FLUIDS, 2020, 5 (06)
[3]  
de Montera L, 2013, Arxiv, DOI arXiv:1303.3266
[4]   A global surface drifter data set at hourly resolution [J].
Elipot, Shane ;
Lumpkin, Rick ;
Perez, Renellys C. ;
Lilly, Jonathan M. ;
Early, Jeffrey J. ;
Sykulski, Adam M. .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2016, 121 (05) :2937-2966
[5]   Time-reversal-symmetry Breaking in Turbulence [J].
Jucha, Jennifer ;
Xu, Haitao ;
Pumir, Alain ;
Bodenschatz, Eberhard .
PHYSICAL REVIEW LETTERS, 2014, 113 (05)
[6]   THE LOCAL-STRUCTURE OF TURBULENCE IN INCOMPRESSIBLE VISCOUS-FLUID FOR VERY LARGE REYNOLDS-NUMBERS [J].
KOLMOGOROV, AN .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1991, 434 (1890) :9-13
[7]   Fluid particle accelerations in fully developed turbulence [J].
La Porta, A ;
Voth, GA ;
Crawford, AM ;
Alexander, J ;
Bodenschatz, E .
NATURE, 2001, 409 (6823) :1017-1019
[8]  
Landau L, 1980, Fluid mechanics
[9]  
Landau L.D., 1977, QUANTUM MECH, Vthird
[10]  
Lilley M, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.036307