Deep learning and CRISPR-Cas13d ortholog discovery for optimized RNA targeting

被引:18
|
作者
Wei, Jingyi [1 ,2 ,3 ]
Lotfy, Peter [4 ]
Faizi, Kian [4 ]
Baungaard, Sara [2 ]
Gibson, Emily [3 ]
Wang, Eleanor [4 ,5 ]
Slabodkin, Hannah [2 ,3 ]
Kinnaman, Emily [2 ,3 ]
Chandrasekaran, Sita [3 ,5 ,6 ]
Kitano, Hugo [7 ]
Durrant, Matthew G. [3 ,5 ,6 ]
Duffy, Connor, V [3 ,8 ]
Pawluk, April [3 ]
Hsu, Patrick D. [3 ,5 ]
Konermann, Silvana [2 ,3 ]
机构
[1] Stanford Univ, Dept Bioengn, Stanford, CA USA
[2] Stanford Univ, Dept Biochem, Stanford, CA 94305 USA
[3] Arc Inst, Palo Alto, CA 94304 USA
[4] Salk Inst Biol Studies, Lab Mol & Cell Biol, La Jolla, CA USA
[5] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA
[6] Univ Calif Berkeley, Innovat Genom Inst, Berkeley, CA USA
[7] Stanford Univ, Dept Comp Sci, Stanford, CA USA
[8] Stanford Univ, Dept Genet, Stanford, CA USA
关键词
PREDICTION; GENOME;
D O I
10.1016/j.cels.2023.11.006
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Effective and precise mammalian transcriptome engineering technologies are needed to accelerate biolog-ical discovery and RNA therapeutics. Despite the promise of programmable CRISPR-Cas13 ribonucleases, their utility has been hampered by an incomplete understanding of guide RNA design rules and cellular toxicity resulting from off-target or collateral RNA cleavage. Here, we quantified the performance of over 127,000 RfxCas13d (CasRx) guide RNAs and systematically evaluated seven machine learning models to build a guide efficiency prediction algorithm orthogonally validated across multiple human cell types. Deep learning model interpretation revealed preferred sequence motifs and secondary features for highly efficient guides. We next identified and screened 46 novel Cas13d orthologs, finding that DjCas13d achieves low cellular toxicity and high specificity-even when targeting abundant transcripts in sensitive cell types, including stem cells and neurons. Our Cas13d guide efficiency model was successfully generalized to DjCas13d, illustrating the power of combining machine learning with ortholog discovery to advance RNA tar-geting in human cells.
引用
收藏
页码:1087 / 1102.e13
页数:30
相关论文
共 34 条
  • [21] Functionally characterizing obesity-susceptibility genes using CRISPR/Cas9, in vivo imaging and deep learning
    Mazzaferro, Eugenia
    Mujica, Endrina
    Zhang, Hanqing
    Emmanouilidou, Anastasia
    Jenseit, Anne
    Evcimen, Bade
    Metzendorf, Christoph
    Dethlefsen, Olga
    Loos, Ruth J. F.
    Vienberg, Sara Gry
    Larsson, Anders
    Allalou, Amin
    den Hoed, Marcel
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [22] CRISPR-Cas13a mediated targeting of hepatitis C virus internal-ribosomal entry site (IRES) as an effective antiviral strategy
    Ashraf, Muhammad Usman
    Salman, Hafiz Muhammad
    Khalid, Muhammad Farhan
    Khan, Muhammad Haider Farooq
    Anwar, Saima
    Afzal, Samia
    Idrees, Muhammad
    Chaudhary, Safee Ullah
    BIOMEDICINE & PHARMACOTHERAPY, 2021, 136
  • [23] RBProkCNN: Deep learning on appropriate contextual evolutionary information for RNA binding protein discovery in prokaryotes
    Pradhan, Upendra Kumar
    Naha, Sanchita
    Das, Ritwika
    Gupta, Ajit
    Parsad, Rajender
    Meher, Prabina Kumar
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2024, 23 : 1631 - 1640
  • [24] CRISPR-Cas13a Targeting the FGFR3-TACC3 Fusion Gene Inhibits Proliferation of Bladder Cancer Cells in vitro and in vivo
    Wang, Yadong
    Zhu, Jinjin
    Liu, Shangwen
    Sun, Zhengbo
    Wen, Guibiao
    Huang, Dakun
    Chen, Mianxiong
    Liu, Yuchen
    Lin, Feng
    ONCOTARGETS AND THERAPY, 2024, 17 : 1197 - 1207
  • [25] CRISPR-Cas9 targeting of MMP13 in human chondrocytes leads to significantly reduced levels of the metalloproteinase and enhanced type II collagen accumulation
    Seidl, C. I.
    Fulga, T. A.
    Murphy, C. L.
    OSTEOARTHRITIS AND CARTILAGE, 2019, 27 (01) : 140 - 147
  • [26] A jumbo phage that forms a nucleus-like structure evades CRISPR-Cas DNA targeting but is vulnerable to type III RNA-based immunity
    Malone, Lucia M.
    Warring, Suzanne L.
    Jackson, Simon A.
    Warnecke, Carolin
    Gardner, Paul P.
    Gumy, Laura F.
    Fineran, Peter C.
    NATURE MICROBIOLOGY, 2020, 5 (01) : 48 - +
  • [27] CRISPR/Cas9-mediated epigenetic editing tool: An optimized strategy for targeting de novo DNA methylation with stable status via homology directed repair pathway
    Wang, Jie
    Li, Dandan
    Yang, Jing
    Chang, Lu
    Zhang, Rui
    Li, Jinming
    BIOCHIMIE, 2022, 202 : 190 - 205
  • [28] Artificial Intelligence Technique for Gene Expression by Tumor RNA-Seq Data: A Novel Optimized Deep Learning Approach
    Khalifa, Nour Eldeen M.
    Taha, Mohamed Hamed N.
    Ali, Dalia Ezzat
    Slowik, Adam
    Hassanien, Abdul Ella
    IEEE ACCESS, 2020, 8 : 22874 - 22883
  • [29] Accurate deep learning off-target prediction with novel sgRNA-DNA sequence encoding in CRISPR-Cas9 gene editing
    Charlier, Jeremy
    Nadon, Robert
    Makarenkov, Vladimir
    BIOINFORMATICS, 2021, 37 (16) : 2299 - 2307
  • [30] Discovery of Active Ingredient of Yinchenhao Decoction Targeting TLR4 for Hepatic Inflammatory Diseases Based on Deep Learning Approach
    Zhang, Sizhe
    Han, Peng
    Sun, Haiqing
    Su, Ying
    Chen, Chen
    Chen, Cheng
    Li, Jinyao
    Lv, Xiaoyi
    Tian, Xuecong
    Xu, Yandan
    INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES, 2024,