Deep learning and CRISPR-Cas13d ortholog discovery for optimized RNA targeting

被引:18
|
作者
Wei, Jingyi [1 ,2 ,3 ]
Lotfy, Peter [4 ]
Faizi, Kian [4 ]
Baungaard, Sara [2 ]
Gibson, Emily [3 ]
Wang, Eleanor [4 ,5 ]
Slabodkin, Hannah [2 ,3 ]
Kinnaman, Emily [2 ,3 ]
Chandrasekaran, Sita [3 ,5 ,6 ]
Kitano, Hugo [7 ]
Durrant, Matthew G. [3 ,5 ,6 ]
Duffy, Connor, V [3 ,8 ]
Pawluk, April [3 ]
Hsu, Patrick D. [3 ,5 ]
Konermann, Silvana [2 ,3 ]
机构
[1] Stanford Univ, Dept Bioengn, Stanford, CA USA
[2] Stanford Univ, Dept Biochem, Stanford, CA 94305 USA
[3] Arc Inst, Palo Alto, CA 94304 USA
[4] Salk Inst Biol Studies, Lab Mol & Cell Biol, La Jolla, CA USA
[5] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA
[6] Univ Calif Berkeley, Innovat Genom Inst, Berkeley, CA USA
[7] Stanford Univ, Dept Comp Sci, Stanford, CA USA
[8] Stanford Univ, Dept Genet, Stanford, CA USA
关键词
PREDICTION; GENOME;
D O I
10.1016/j.cels.2023.11.006
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Effective and precise mammalian transcriptome engineering technologies are needed to accelerate biolog-ical discovery and RNA therapeutics. Despite the promise of programmable CRISPR-Cas13 ribonucleases, their utility has been hampered by an incomplete understanding of guide RNA design rules and cellular toxicity resulting from off-target or collateral RNA cleavage. Here, we quantified the performance of over 127,000 RfxCas13d (CasRx) guide RNAs and systematically evaluated seven machine learning models to build a guide efficiency prediction algorithm orthogonally validated across multiple human cell types. Deep learning model interpretation revealed preferred sequence motifs and secondary features for highly efficient guides. We next identified and screened 46 novel Cas13d orthologs, finding that DjCas13d achieves low cellular toxicity and high specificity-even when targeting abundant transcripts in sensitive cell types, including stem cells and neurons. Our Cas13d guide efficiency model was successfully generalized to DjCas13d, illustrating the power of combining machine learning with ortholog discovery to advance RNA tar-geting in human cells.
引用
收藏
页码:1087 / 1102.e13
页数:30
相关论文
共 50 条
  • [1] Precise RNA targeting with CRISPR-Cas13d
    Hart, Sydney K.
    Mueller, Simon
    Wessels, Hans-Hermann
    Mendez-Mancilla, Alejandro
    Drabavicius, Gediminas
    Choi, Olivia
    Sanjana, Neville E.
    NATURE BIOTECHNOLOGY, 2025,
  • [2] Massively parallel profiling of RNA-targeting CRISPR-Cas13d
    Hung-Che Kuo
    Joshua Prupes
    Chia-Wei Chou
    Ilya J. Finkelstein
    Nature Communications, 15
  • [3] Massively parallel profiling of RNA-targeting CRISPR-Cas13d
    Kuo, Hung-Che
    Prupes, Joshua
    Chou, Chia-Wei
    Finkelstein, Ilya J.
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [4] Shotgun knockdown of RNA by CRISPR-Cas13d in fission yeast
    Chen, Zhikai
    Zheng, Shengnan
    Fu, Chuanhai
    JOURNAL OF CELL SCIENCE, 2023, 136 (06)
  • [5] CRISPR-Cas13d mediates robust RNA virus interference in plants
    Mahas, Ahmed
    Aman, Rashid
    Mahfouz, Magdy
    GENOME BIOLOGY, 2019, 20 (01)
  • [6] CRISPR-Cas13d mediates robust RNA virus interference in plants
    Ahmed Mahas
    Rashid Aman
    Magdy Mahfouz
    Genome Biology, 20
  • [7] CRISPR-Cas13d in plant biology: an insight
    Sarkar, Jyotirmay
    Jyoti, Thakur Prava
    Sahana, Soumitra
    Bhattacharya, Arka
    Chandel, Shivani
    Singh, Rajveer
    PLANT BIOTECHNOLOGY REPORTS, 2024, 18 (03) : 301 - 311
  • [8] Structural Basis for the RNA-Guided Ribonuclease Activity of CRISPR-Cas13d
    Zhang, Cheng
    Konermann, Silvana
    Brideau, Nicholas J.
    Lotfy, Peter
    Wu, Xuebing
    Novick, Scott J.
    Strutzenberg, Timothy
    Griffin, Patrick R.
    Hsu, Patrick D.
    Lyumkis, Dmitry
    CELL, 2018, 175 (01) : 212 - +
  • [9] RNA targeting with CRISPR–Cas13
    Omar O. Abudayyeh
    Jonathan S. Gootenberg
    Patrick Essletzbichler
    Shuo Han
    Julia Joung
    Joseph J. Belanto
    Vanessa Verdine
    David B. T. Cox
    Max J. Kellner
    Aviv Regev
    Eric S. Lander
    Daniel F. Voytas
    Alice Y. Ting
    Feng Zhang
    Nature, 2017, 550 : 280 - 284
  • [10] RNA targeting with CRISPR-Cas13
    Abudayyeh, Omar O.
    Gootenberg, Jonathan S.
    Essletzbichler, Patrick
    Han, Shuo
    Joung, Julia
    Belanto, Joseph J.
    Verdine, Vanessa
    Cox, David B. T.
    Kellner, Max J.
    Regev, Aviv
    Lander, Eric S.
    Voytas, Daniel F.
    Ting, Alice Y.
    Zhang, Feng
    NATURE, 2017, 550 (7675) : 280 - +