Parameter estimation for fractional power type diffusion: A hybrid Bayesian-deep learning approach

被引:0
作者
Araya, Hector [1 ]
Plaza-Vega, Francisco [2 ]
机构
[1] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Penalolen, Chile
[2] Univ Santiago Chile, Santiago, Chile
关键词
Parameter estimation; power-type fractional diffusion; fractional Brownian motion; ABC; DIFFERENTIAL-EQUATIONS; NEURAL-NETWORKS; INFERENCE; DRIVEN;
D O I
10.1080/03610926.2023.2280522
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we consider the problem of parameter estimation in a power-type diffusion driven by fractional Brownian motion with Hurst parameter in (1/2,1). To estimate the parameters of the process, we use an approximate bayesian computation method. Also, a particular case is addressed by means of variations and wavelet-type methods. Several theoretical properties of the process are studied and numerical examples are provided in order to show the small sample behavior of the proposed methods.
引用
收藏
页码:8234 / 8254
页数:21
相关论文
共 41 条
[1]   Bayesian Inference on the Memory Parameter for Gamma-Modulated Regression Models [J].
Andrade, Plinio ;
Rifo, Laura ;
Torres, Soledad ;
Torres-Aviles, Francisco .
ENTROPY, 2015, 17 (10) :6576-6597
[2]  
Belfadli R., 2011, FRONTIERS SCI ENG, V1, P1
[3]   Bayesian inference for partially observed stochastic differential equations driven by fractional Brownian motion [J].
Beskos, A. ;
Dureau, J. ;
Kalogeropoulos, K. .
BIOMETRIKA, 2015, 102 (04) :809-827
[4]  
Cybenko G., 1989, Mathematics of Control, Signals, and Systems, V2, P303, DOI 10.1007/BF02551274
[5]   Hurst Index Estimation in Stochastic Differential Equations Driven by Fractional Brownian Motion [J].
Gairing, Jan ;
Imkeller, Peter ;
Shevchenko, Radomyra ;
Tudor, Ciprian .
JOURNAL OF THEORETICAL PROBABILITY, 2020, 33 (03) :1691-1714
[6]  
Geron A., 2019, Hands-on Machine Learning with Scikit-Learn, Keras and TensorFlow
[7]   Estimation of the Hurst parameter from discrete noisy data [J].
Gloter, Arnaud ;
Hoffmann, Marc .
ANNALS OF STATISTICS, 2007, 35 (05) :1947-1974
[8]  
Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1
[9]   A Bayesian Approach to Estimating the Long Memory Parameter [J].
Holan, Scott ;
McElroy, Tucker ;
Chakraborty, Sounak .
BAYESIAN ANALYSIS, 2009, 4 (01) :159-190
[10]   MULTILAYER FEEDFORWARD NETWORKS ARE UNIVERSAL APPROXIMATORS [J].
HORNIK, K ;
STINCHCOMBE, M ;
WHITE, H .
NEURAL NETWORKS, 1989, 2 (05) :359-366