Deposition and water repelling of temperature-responsive nanopesticides on leaves

被引:64
|
作者
Tang, Jie [1 ]
Tong, Xiaojing [1 ]
Chen, Yongjun [2 ]
Wu, Yue [1 ]
Zheng, Zhiyuan [1 ]
Kayitmazer, A. Basak [3 ]
Ahmad, Ayyaz [4 ]
Ramzan, Naveed [5 ]
Yang, Jintao [6 ]
Huang, Qingchun [2 ]
Xu, Yisheng [1 ]
机构
[1] East China Univ Sci & Technol, State Key Lab Chem Engn, Shanghai 200237, Peoples R China
[2] East China Univ Sci & Technol, Sch Pharm, Shanghai Key Lab Chem Biol, Shanghai 200237, Peoples R China
[3] Bogazici Univ, Dept Chem, Istanbul, Turkiye
[4] Muhammad Nawaz Sharif Univ Engn & Technol, Dept Chem Engn, Multan, Pakistan
[5] Univ Engn & Technol, Fac Chem Met & Polymer Engn, Lahore, Pakistan
[6] Zhejiang Univ Technol, Coll Mat Sci & Engn, Hangzhou 310014, Peoples R China
基金
中国国家自然科学基金;
关键词
STAR-BLOCK COPOLYMER; DRUG-RELEASE; NANOPARTICLES; POLYMERIZATION;
D O I
10.1038/s41467-023-41878-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Pesticides are widely used to increase agricultural productivity, however, weak adhesion and deposition lead to low efficient utilization. Herein, we prepare a nanopesticide formulation (tebuconazole nanopesticides) which is leaf-adhesive, and water-dispersed via a rapid nanoparticle precipitation method, flash nanoprecipitation, using temperature-responsive copolymers poly-(2-(dimethylamino)ethylmethylacrylate)-b-poly(epsilon-caprolactone) as the carrier. Compared with commercial suspensions, the encapsulation by the polymer improves the deposition of TEB, and the contact angle on foliage is lowered by 40.0(degrees). Due to the small size and strong van der Waals interactions, the anti-washing efficiency of TEB NPs is increased by 37% in contrast to commercial ones. Finally, the acute toxicity of TEB NPs to zebrafish shows a more than 25-fold reduction as compared to commercial formulation indicating good biocompatibility of the nanopesticides. This work is expected to enhance pesticide droplet deposition and adhesion, maximize the use of pesticides, tackling one of the application challenges of pesticides.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Deposition and water repelling of temperature-responsive nanopesticides on leaves
    Jie Tang
    Xiaojing Tong
    Yongjun Chen
    Yue Wu
    Zhiyuan Zheng
    A. Basak Kayitmazer
    Ayyaz Ahmad
    Naveed Ramzan
    Jintao Yang
    Qingchun Huang
    Yisheng Xu
    Nature Communications, 14
  • [2] A Temperature-Responsive Nanoreactor
    Li, Songjun
    Ge, Yi
    Tiwari, Ashutosh
    Cao, Shunsheng
    SMALL, 2010, 6 (21) : 2453 - 2459
  • [3] Temperature-responsive chromatography
    Kanazawa, H
    Matsushima, Y
    YAKUGAKU ZASSHI-JOURNAL OF THE PHARMACEUTICAL SOCIETY OF JAPAN, 1997, 117 (10-11): : 817 - 824
  • [4] Temperature-responsive nanofibers for controllable oil/water separation
    Wang, Yuanfeng
    Lai, Chuilin
    Hu, Huawen
    Liu, Yang
    Fei, Bin
    Xin, John H.
    RSC ADVANCES, 2015, 5 (63): : 51078 - 51085
  • [5] Temperature-responsive chromatography
    Kanazawa, H
    Matsushima, Y
    Okano, T
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 1998, 17 (07) : 435 - 440
  • [6] Temperature-responsive chromatography
    Kanazawa, H
    Matsushima, Y
    Okano, T
    ADVANCES IN CHROMATOGRAPHY, VOL 41, 2001, 41 : 311 - 336
  • [7] Behavior of Temperature-Responsive Copolymer Microgels at the Oil/Water Interface
    Wu, Yaodong
    Wiese, Susanne
    Balaceanu, Andreea
    Richtering, Walter
    Pich, Andrij
    LANGMUIR, 2014, 30 (26) : 7660 - 7669
  • [8] Temperature-responsive protein nanopores
    Jung, YN
    Movileanu, L
    Bayley, H
    BIOPHYSICAL JOURNAL, 2005, 88 (01) : 332A - 333A
  • [9] Temperature-Responsive Multistable Metamaterials
    Korpas, Lucia M.
    Yin, Rui
    Yasuda, Hiromi
    Raney, Jordan R.
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (26) : 31163 - 31170
  • [10] Temperature-responsive protein pores
    Jung, Yuni
    Bayley, Hagan
    Movileanu, Liviu
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (47) : 15332 - 15340