High-order finite difference approximation of the Keller-Segel model with additional self- and cross-diffusion terms and a logistic source

被引:1
作者
Xu, Panpan [1 ]
Ge, Yongbin [1 ]
Zhang, Lin [2 ]
机构
[1] Ningxia Univ, Inst Appl Math & Mech, Yinchuan 750021, Peoples R China
[2] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
Keller-Segel chemotaxis model; logistic source; self-diffusion terms; cross-diffusion terms; finite difference method; high-order accuracy; ELEMENT-METHOD; CHEMOTAXIS MODELS; AGGREGATION; SCHEMES;
D O I
10.3934/nhm.2023065
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the Keller-Segel chemotaxis model with self- and cross-diffusion terms and a logistic source. This system consists of a fully nonlinear reaction-diffusion equation with additional cross-diffusion. We establish some high-order finite difference schemes for solving one- and two-dimensional problems. The truncation error remainder correction method and fourth-order Pade & PRIME; compact schemes are employed to approximate the spatial and temporal derivatives, respectively. It is shown that the numerical schemes yield second-order accuracy in time and fourth-order accuracy in space. Some numerical experiments are demonstrated to verify the accuracy and reliability of the proposed schemes. Furthermore, the blow-up phenomenon and bacterial pattern formation are numerically simulated.
引用
收藏
页码:1471 / 1492
页数:22
相关论文
共 31 条
[1]   CHEMOTAXIS IN BACTERIA [J].
ADLER, J .
ANNUAL REVIEW OF BIOCHEMISTRY, 1975, 44 :341-356
[2]   Lower estimate of the attractor dimension for a chemotaxis growth system [J].
Aida, Masashi ;
Tsujikawa, Tohru ;
Efendiev, Messoud ;
Yagi, Atsushi ;
Mimura, Masayasu .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2006, 74 :453-474
[3]   A time semi-exponentially fitted scheme for chemotaxis-growth models [J].
Akhmouch, M. ;
Benzakour Amine, M. .
CALCOLO, 2017, 54 (02) :609-641
[4]  
[Anonymous], 1997, Ann. Sc. Norm. Super. Pisa, Cl. Sci.
[5]   CROSS DIFFUSION AND NONLINEAR DIFFUSION PREVENTING BLOW UP IN THE KELLER-SEGEL MODEL [J].
Antonio Carrillo, Jose ;
Hittmeir, Sabine ;
Juengel, Ansgar .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2012, 22 (12)
[6]  
Bonner J.T., 1967, The Cellular Slime Molds, DOI [10.1515/9781400876884, DOI 10.1515/9781400876884]
[7]  
BONNER JT, 1963, J EMBRYOL EXP MORPH, V11, P571
[8]   THE SCALAR KELLER-SEGEL MODEL ON NETWORKS [J].
Borsche, R. ;
Goettlich, S. ;
Klar, A. ;
Schillen, P. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2014, 24 (02) :221-247
[9]   Mass-Preserving Approximation of a Chemotaxis Multi-Domain Transmission Model for Microfluidic Chips [J].
Braun, Elishan Christian ;
Bretti, Gabriella ;
Natalini, Roberto .
MATHEMATICS, 2021, 9 (06)
[10]   COMPLEX PATTERNS FORMED BY MOTILE CELLS OF ESCHERICHIA-COLI [J].
BUDRENE, EO ;
BERG, HC .
NATURE, 1991, 349 (6310) :630-633