Development of the grass LAI and CCC remote sensing-based models and their transferability using sentinel-2 data in heterogeneous grasslands

被引:4
|
作者
Tsele, Philemon [1 ,3 ]
Ramoelo, Abel [2 ]
Qabaqaba, Mcebisi [2 ]
机构
[1] Univ Pretoria, Dept Geog Geoinformat & Meteorol, Pretoria, South Africa
[2] Univ Pretoria, Ctr Environm Studies, Dept Geog Geoinformat & Meteorol, Pretoria, South Africa
[3] Univ Pretoria, Dept Geog Geoinformat & Meteorol, ZA-0028 Pretoria, South Africa
基金
新加坡国家研究基金会;
关键词
Leaf area index (LAI); canopy chlorophyll content (CCC); sentinel-2; imagery; indices; LEAF-AREA INDEX; RED-EDGE BANDS; CHLOROPHYLL CONTENT; VEGETATION INDEXES; INVERSION; REFLECTANCE; VALIDATION; RETRIEVAL; RAPIDEYE; BIOMASS;
D O I
10.1080/01431161.2023.2205982
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Estimation of biophysical variables such as leaf area index (LAI) and canopy chlorophyll content (CCC) at high spatiotemporal resolution is important for managing natural and heterogeneous environments. However, accurate estimation of biophysical variables particularly over heterogeneous environments remains a challenge. The objective of the study was to develop locally parameterized grass LAI and CCC empirical models using the Sentinel-2 variables combined with the Stepwise multiple linear regression (SMLR) and Random forest (RF) at the Golden Gate Highlands National Park (GGHNP) and Marakele National Park (MNP) in South Africa. Results showed that in MNP, SMLR yielded better LAI estimation with root mean squared error (RMSE) of 0.67 m(2).m(-2) and mean adjusted error (MAE) of 0.54, explaining 48% of LAI variability, when bands and indices are combined. In contrast, RF gave better CCC estimation i.e. RMSE and MAE of 17.08 mu g.cm(-2) and 13.18 respectively, explaining about 40% of CCC variability with Sentinel-2 bands only. In GGHNP, the RF models provided the best estimates of both LAI and CCC compared to SMLR models. Furthermore, the CCC and LAI estimation models of GGHNP showed improved model accuracies when 50% and 75% of the MNP field samples were transferred to the GGHNP models. In contrast, the CCC and LAI estimation models of MNP showed a decline in model performance across all scenarios where the GGHNP field samples were transferred to the MNP models. These findings have significant implications for the development of locally parameterized types of models that can provide improved and consistent site-specific accurate estimates of grass biophysical parameters over heterogeneous environments.
引用
收藏
页码:2643 / 2667
页数:25
相关论文
共 50 条
  • [1] Hybrid retrieval of grass biophysical variables based-on radiative transfer, active learning and regression methods using Sentinel-2 data in Marakele National Park
    Tsele, Philemon
    Ramoelo, Abel
    GEOCARTO INTERNATIONAL, 2024, 39 (01)
  • [2] Monitoring of grassland productivity using Sentinel-2 remote sensing data
    Dusseux, Pauline
    Guyet, Thomas
    Pattier, Pierre
    Barbier, Valentin
    Nicolas, Herve
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 111
  • [3] Evaluation of models to determine LAI on poplar stands using spectral indices from Sentinel-2 satellite images
    Canete-Salinas, Paulo
    Zamudio, Francisco
    Yanez, Marco
    Gajardo, John
    Valdes, Hector
    Espinosa, Cristian
    Venegas, Jaime
    Retamal, Luis
    Ortega-Farias, Samuel
    Acevedo-Opazo, Cesar
    ECOLOGICAL MODELLING, 2020, 428
  • [4] Using Sentinel-2 Data for Retrieving LAI and Leaf and Canopy Chlorophyll Content of a Potato Crop
    Clevers, Jan G. P. W.
    Kooistra, Lammert
    van den Brande, Marnix M. M.
    REMOTE SENSING, 2017, 9 (05)
  • [5] Detection of Irrigated Permanent Grasslands with Sentinel-2 Based on Temporal Patterns of the Leaf Area Index (LAI)
    Abubakar, Mukhtar
    Chanzy, Andre
    Pouget, Guillaume
    Flamain, Fabrice
    Courault, Dominique
    REMOTE SENSING, 2022, 14 (13)
  • [6] Combining both spectral and textural indices for alleviating saturation problem in forest LAI estimation using Sentinel-2 data
    Wang, Quan
    Putri, Niken Andika
    Gan, Yi
    Song, Guangman
    GEOCARTO INTERNATIONAL, 2022, 37 (25) : 10511 - 10531
  • [7] Pantropical modelling of canopy functional traits using Sentinel-2 remote sensing data
    Aguirre-Gutierrez, Jesus
    Rifal, Sami
    Shenkin, Alexander
    Oliveras, Imma
    Bentley, Lisa Patrick
    Svatek, Martin
    Girardin, Cecile A. J.
    Both, Sabine
    Riutta, Terhi
    Berenguer, Erika
    Kissling, W. Daniel
    Bauman, David
    Raab, Nicolas
    Moore, Sam
    Farfan-Rios, William
    Simoes Figueiredo, Axa Emanuelle
    Reis, Simone Matias
    Ndong, Josue Edzang
    Ondo, Fidele Evouna
    Bengone, Natacha N'ssi
    Mihindou, Vianet
    Moraes de Seixas, Marina Maria
    Adu-Bredu, Stephen
    Abemethy, Katharine
    Asner, Gregory P.
    Barlow, Jos
    Burstem, David F. R. P.
    Coomes, David A.
    Cernusak, Lucas A.
    Dargle, Greta C.
    Enquist, Brian J.
    Ewers, Robert M.
    Ferreira, Joice
    Jeffery, Kathryn J.
    Joly, Carlos A.
    Lewis, Simon L.
    Marimon-Junior, Ben Hur
    Martin, Roberta E.
    Morandi, Paulo S.
    Phillips, Oliver L.
    Quesada, Carlos A.
    Salinas, Norma
    Marimon, Beatriz Schwantes
    Silman, Miles
    Teh, Yit Arn
    White, Lee J. T.
    Malhi, Yadvinder
    REMOTE SENSING OF ENVIRONMENT, 2021, 252
  • [8] Mapping Plant Nitrogen Concentration and Aboveground Biomass of Potato Crops from Sentinel-2 Data Using Ensemble Learning Models
    Yin, Hang
    Li, Fei
    Yang, Haibo
    Di, Yunfei
    Hu, Yuncai
    Yu, Kang
    REMOTE SENSING, 2024, 16 (02)
  • [9] Mapping a European Spruce Bark Beetle Outbreak Using Sentinel-2 Remote Sensing Data
    Dalponte, Michele
    Tatiana Solano-Correa, Yady
    Frizzera, Lorenzo
    Gianelle, Damiano
    REMOTE SENSING, 2022, 14 (13)
  • [10] New three red-edge vegetation index (VI3RE ) for crop seasonal LAI prediction using Sentinel-2 data
    Qiao, Kun
    Zhu, Wenquan
    Xie, Zhiying
    Wu, Shanning
    Li, Shaodan
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2024, 130