Development of the grass LAI and CCC remote sensing-based models and their transferability using sentinel-2 data in heterogeneous grasslands

被引:4
|
作者
Tsele, Philemon [1 ,3 ]
Ramoelo, Abel [2 ]
Qabaqaba, Mcebisi [2 ]
机构
[1] Univ Pretoria, Dept Geog Geoinformat & Meteorol, Pretoria, South Africa
[2] Univ Pretoria, Ctr Environm Studies, Dept Geog Geoinformat & Meteorol, Pretoria, South Africa
[3] Univ Pretoria, Dept Geog Geoinformat & Meteorol, ZA-0028 Pretoria, South Africa
基金
新加坡国家研究基金会;
关键词
Leaf area index (LAI); canopy chlorophyll content (CCC); sentinel-2; imagery; indices; LEAF-AREA INDEX; RED-EDGE BANDS; CHLOROPHYLL CONTENT; VEGETATION INDEXES; INVERSION; REFLECTANCE; VALIDATION; RETRIEVAL; RAPIDEYE; BIOMASS;
D O I
10.1080/01431161.2023.2205982
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Estimation of biophysical variables such as leaf area index (LAI) and canopy chlorophyll content (CCC) at high spatiotemporal resolution is important for managing natural and heterogeneous environments. However, accurate estimation of biophysical variables particularly over heterogeneous environments remains a challenge. The objective of the study was to develop locally parameterized grass LAI and CCC empirical models using the Sentinel-2 variables combined with the Stepwise multiple linear regression (SMLR) and Random forest (RF) at the Golden Gate Highlands National Park (GGHNP) and Marakele National Park (MNP) in South Africa. Results showed that in MNP, SMLR yielded better LAI estimation with root mean squared error (RMSE) of 0.67 m(2).m(-2) and mean adjusted error (MAE) of 0.54, explaining 48% of LAI variability, when bands and indices are combined. In contrast, RF gave better CCC estimation i.e. RMSE and MAE of 17.08 mu g.cm(-2) and 13.18 respectively, explaining about 40% of CCC variability with Sentinel-2 bands only. In GGHNP, the RF models provided the best estimates of both LAI and CCC compared to SMLR models. Furthermore, the CCC and LAI estimation models of GGHNP showed improved model accuracies when 50% and 75% of the MNP field samples were transferred to the GGHNP models. In contrast, the CCC and LAI estimation models of MNP showed a decline in model performance across all scenarios where the GGHNP field samples were transferred to the MNP models. These findings have significant implications for the development of locally parameterized types of models that can provide improved and consistent site-specific accurate estimates of grass biophysical parameters over heterogeneous environments.
引用
收藏
页码:2643 / 2667
页数:25
相关论文
共 50 条
  • [1] Monitoring of grassland productivity using Sentinel-2 remote sensing data
    Dusseux, Pauline
    Guyet, Thomas
    Pattier, Pierre
    Barbier, Valentin
    Nicolas, Herve
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 111
  • [2] Comparative assessment of remote sensing-based water dynamic in a dam lake using a combination of Sentinel-2 data and digital elevation model
    Karaman, Muhittin
    Ozelkan, Emre
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2022, 194 (02)
  • [3] Pantropical modelling of canopy functional traits using Sentinel-2 remote sensing data
    Aguirre-Gutierrez, Jesus
    Rifal, Sami
    Shenkin, Alexander
    Oliveras, Imma
    Bentley, Lisa Patrick
    Svatek, Martin
    Girardin, Cecile A. J.
    Both, Sabine
    Riutta, Terhi
    Berenguer, Erika
    Kissling, W. Daniel
    Bauman, David
    Raab, Nicolas
    Moore, Sam
    Farfan-Rios, William
    Simoes Figueiredo, Axa Emanuelle
    Reis, Simone Matias
    Ndong, Josue Edzang
    Ondo, Fidele Evouna
    Bengone, Natacha N'ssi
    Mihindou, Vianet
    Moraes de Seixas, Marina Maria
    Adu-Bredu, Stephen
    Abemethy, Katharine
    Asner, Gregory P.
    Barlow, Jos
    Burstem, David F. R. P.
    Coomes, David A.
    Cernusak, Lucas A.
    Dargle, Greta C.
    Enquist, Brian J.
    Ewers, Robert M.
    Ferreira, Joice
    Jeffery, Kathryn J.
    Joly, Carlos A.
    Lewis, Simon L.
    Marimon-Junior, Ben Hur
    Martin, Roberta E.
    Morandi, Paulo S.
    Phillips, Oliver L.
    Quesada, Carlos A.
    Salinas, Norma
    Marimon, Beatriz Schwantes
    Silman, Miles
    Teh, Yit Arn
    White, Lee J. T.
    Malhi, Yadvinder
    REMOTE SENSING OF ENVIRONMENT, 2021, 252
  • [4] Detection of Irrigated Permanent Grasslands with Sentinel-2 Based on Temporal Patterns of the Leaf Area Index (LAI)
    Abubakar, Mukhtar
    Chanzy, Andre
    Pouget, Guillaume
    Flamain, Fabrice
    Courault, Dominique
    REMOTE SENSING, 2022, 14 (13)
  • [5] Mapping a European Spruce Bark Beetle Outbreak Using Sentinel-2 Remote Sensing Data
    Dalponte, Michele
    Tatiana Solano-Correa, Yady
    Frizzera, Lorenzo
    Gianelle, Damiano
    REMOTE SENSING, 2022, 14 (13)
  • [6] Using Sentinel-2 satellite data to quantify grass and biomass production
    Dusseux, P.
    Michele, E.
    Airiaud, A.
    Guyet, T.
    Nicolas, H.
    Pattier, P.
    FOURRAGES, 2021, (247): : 19 - 26
  • [7] Object Based Remote Sensing Using Sentinel Data
    McLaughlin, Connor
    Woodley, Alan
    Geva, Shlomo
    Chappell, Timothy
    Kelly, Wayne
    Boles, Wageeh
    De Vine, Lance
    Hutson, Holly
    2020 DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA), 2020,
  • [8] Remote estimates of CDOM using Sentinel-2 remote sensing data in reservoirs with different trophic states across China
    Shang, Yingxin
    Liu, Ge
    Wen, Zhidan
    Jacinthe, Pierre-Andre
    Song, Kaishan
    Zhang, Bai
    Lyu, Lili
    Li, Sijia
    Wang, Xiang
    Yu, Xiangfei
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2021, 286
  • [9] Remote Sensing of Turbidity in Optically Shallow Waters Using Sentinel-2 MSI and PRISMA Satellite Data
    Katlane, Rim
    Doxaran, David
    Elkilani, Boubaker
    Trabelsi, Chaima
    PFG-JOURNAL OF PHOTOGRAMMETRY REMOTE SENSING AND GEOINFORMATION SCIENCE, 2024, 92 (04): : 431 - 447
  • [10] Spatial Transferability of Random Forest Models for Crop Type Classification Using Sentinel-1 and Sentinel-2
    Orynbaikyzy, Aiym
    Gessner, Ursula
    Conrad, Christopher
    REMOTE SENSING, 2022, 14 (06)