Generation of random directions from the generalized von Mises-Fisher distribution

被引:0
作者
Salvador, Sara [1 ,2 ]
Gatto, Riccardo [1 ]
机构
[1] Univ Bern, Inst Math Stat & Actuarial Sci, Bern, Switzerland
[2] Univ Bern, Inst Math Stat & Actuarial Sci, Alpeneggstr 22, CH-3012 Bern, Switzerland
关键词
Acceptance-rejection algorithm; Bimodal spherical distribution; Conditional simulation; Metropolis-Hastings algorithm; Normalizing constant; SIMULATION;
D O I
10.1080/03610918.2023.2193691
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce two algorithms for generating from the bimodal generalized von Mises-Fisher distribution on the sphere. This generalization of the von Mises-Fisher distribution is more flexible, in particular by allowing for multimodality, and it preserves many of the theoretical properties of the von Mises-Fisher. The first proposed generation algorithm is obtained from conditional simulation and acceptance-rejection. The second one is the Metropolis-Hastings with mixture of von Mises-Fisher as jumping or instrumental distribution. These two algorithms are compared through density estimations of generated polar angles.
引用
收藏
页码:5491 / 5506
页数:16
相关论文
共 16 条
[1]  
Abramowitz M., 1974, TECHNOMETRICS
[2]  
Asmussen S., 2007, STOCHASTIC SIMULATIO
[3]   ANTIPODALLY SYMMETRIC DISTRIBUTION ON SPHERE [J].
BINGHAM, C .
ANNALS OF STATISTICS, 1974, 2 (06) :1201-1225
[4]  
Dhillon I. S., 2003, Modeling Data Using Directional Distributions
[5]  
Gatto R., 2007, Statistical Methodology, V4, P341, DOI [DOI 10.1016/J.STAMET.2006.11.003, 10.1016/j.stamet.2006.11.003]
[6]  
Gatto R, 2011, ADVANCES IN DIRECTIONAL AND LINEAR STATISTICS: A FESTSCHRIFT FOR SREENIVASA ROA JAMMALAMADAKA, P51, DOI 10.1007/978-3-7908-2628-9_4
[7]   MONTE-CARLO SAMPLING METHODS USING MARKOV CHAINS AND THEIR APPLICATIONS [J].
HASTINGS, WK .
BIOMETRIKA, 1970, 57 (01) :97-&
[8]   Simulation of the Matrix Bingham-von Mises-Fisher Distribution, With Applications to Multivariate and Relational Data [J].
Hoff, Peter D. .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2009, 18 (02) :438-456
[9]  
Jammalamadaka RS., 2022, Directional statistics for innovative applications, P119
[10]   A New Unified Approach for the Simulation of a Wide Class of Directional Distributions [J].
Kent, John T. ;
Ganeiber, Asaad M. ;
Mardia, Kanti V. .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2018, 27 (02) :291-301