Absorbing nonlinearity;
Asymptotic behavior of solutions to PDEs;
Second-order semilinear hyperbolic equations;
Space-dependent damping;
Wave equation;
ENERGY DECAY;
LIFE-SPAN;
DIFFUSION PHENOMENON;
ASYMPTOTIC-BEHAVIOR;
CRITICAL EXPONENT;
CAUCHY-PROBLEM;
HYPERBOLIC-EQUATIONS;
GLOBAL ASYMPTOTICS;
DISSIPATION;
PROFILES;
D O I:
10.1002/mma.8957
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We study the large time behavior of solutions to the semilinear wave equation with space-dependent damping and absorbing nonlinearity in the whole space or exterior domains. Our result shows how the amplitude of the damping coefficient, the power of the nonlinearity, and the decay rate of the initial data at the spatial infinity determine the decay rates of the energy and the L-2-norm of the solution. In the appendix, we also give a survey of basic results on the local and global existence of solutions and the properties of weight functions used in the energy method.
机构:
Tokyo Univ Sci, Dept Math, Shinjuku Ku, 1-3 Kagurazaka, Tokyo 1628601, JapanTokyo Univ Sci, Dept Math, Shinjuku Ku, 1-3 Kagurazaka, Tokyo 1628601, Japan
Sobajima, Motohiro
Wakasugi, Yuta
论文数: 0引用数: 0
h-index: 0
机构:
Nagoya Univ, Grad Sch Math, Chikusa Ku, Furocho, Nagoya, Aichi 4648602, JapanTokyo Univ Sci, Dept Math, Shinjuku Ku, 1-3 Kagurazaka, Tokyo 1628601, Japan