Past, Present, and Future Outlook for Edge Isolation Processes in Highly Efficient Silicon Solar Cell Manufacturing

被引:9
作者
Dannenberg, Tobias [1 ]
Vollmer, Jan [1 ]
Passig, Michael [1 ]
Scheiwe, Caroline [1 ]
Brunner, Damian [1 ]
Pediaditakis, Alexis [1 ]
Jaeger, Ulrich [1 ]
Wang, Iron [1 ]
Xie, Weiwei [1 ]
Xu, Sufan [1 ]
Wu, Jim [1 ]
Krieg, Katrin [2 ]
Tessmann, Christopher [2 ]
Zimmer, Martin [2 ]
Kuehnlein, Holger [1 ]
机构
[1] RENA Technol GmbH, D-78148 Gutenbach, Germany
[2] Fraunhofer Inst Solar Energy Syst ISE, D-79110 Freiburg, Germany
来源
SOLAR RRL | 2023年 / 7卷 / 08期
关键词
edge isolation; mass production; passivated emitter and rear contact; silicon; solar cells; total cost of ownership; wet chemistry; ETCH;
D O I
10.1002/solr.202200594
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This work highlights present research and mass production results of wet-chemical solutions for industrial edge isolation of silicon solar cells, aiming for a reduction of nitric acid consumption and production costs as well as a simultaneous increase in efficiency. All processes are applied to either industrially passivated emitter and rear contact (PERC) or tunnel oxide-passivated contact (TOPCon) solar cells. Herein, a review of different edge isolation techniques in the history of silicon solar cell processing is presented. Subsequently, novel wet-chemical approaches are focused on, namely 1) HNO3-reduced edge isolation (InOxSide Fusion), 2) HNO3-free edge isolation (InOxSide Blue), and 3) batch cluster solution-a combination of an acidic inline and an alkaline batch tool for emitter edge isolation of PERC and TOPCon solar cells. For each of the approaches, cell results and total cost of ownership estimations are presented. Based on all findings, a comprehensive discussion between inline versus batch-cluster processing is presented. All investigations are performed on industrial equipment, wafer sizes, and a solar cell efficiency level of above 23%.
引用
收藏
页数:11
相关论文
共 36 条
  • [1] Simplified edge isolation of buried contact solar cells
    Arumughan, J
    Pernau, T
    Hauser, A
    Melnyk, H
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2005, 87 (1-4) : 705 - 714
  • [2] Development of the PERC Solar Cell
    Blakers, Andrew
    [J]. IEEE JOURNAL OF PHOTOVOLTAICS, 2019, 9 (03): : 629 - 635
  • [3] Laser Processing in Industrial Solar Module Manufacturing
    Booth, Heather
    [J]. JOURNAL OF LASER MICRO NANOENGINEERING, 2010, 5 (03): : 183 - 191
  • [4] Progress in the development of industrial nPERT cells
    Buchholz, Florian
    Preis, Pirmin
    Chu, Haifeng
    Lossen, Jan
    Wefringhaus, Eckard
    [J]. 7TH INTERNATIONAL CONFERENCE ON SILICON PHOTOVOLTAICS, SILICONPV 2017, 2017, 124 : 649 - 656
  • [5] Integration of inline single-side wet emitter etch in PERC cell manufacturing
    Cornagliotti, E.
    Ngamo, M.
    Tous, L.
    Russell, R.
    Horzel, J.
    Hendrickx, D.
    Douhard, B.
    Prajapati, V.
    Janssens, T.
    Poortmans, J.
    [J]. PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON CRYSTALLINE SILICON PHOTOVOLTAICS (SILICONPV 2012), 2012, 27 : 624 - 630
  • [6] De Wild-Scholten M.J., 2007, P 22 EUR PHOT SOL EN, P3
  • [7] Fertig F., 2014, ENERGY P, V55, P16
  • [8] Microscale Contact Formation by Laser Enhanced Contact Optimization
    Grosser, Stephan
    Krassowski, Eve
    Swatek, Sina
    Zhao, Hongming
    Hagendorf, Christian
    [J]. IEEE JOURNAL OF PHOTOVOLTAICS, 2022, 12 (01): : 26 - 30
  • [9] Hauser A., 2001, P 17 EUR PHOT SOL EN
  • [10] Passivating contacts and tandem concepts: Approaches for the highest silicon-based solar cell efficiencies
    Hermle, Martin
    Feldmann, Frank
    Bivour, Martin
    Goldschmidt, Jan Christoph
    Glunz, Stefan W.
    [J]. APPLIED PHYSICS REVIEWS, 2020, 7 (02)