L(2,1)-Labeling of the Iterated Mycielski Graphs of Graphs and Some Problems Related to Matching Problems

被引:4
|
作者
Dliou, Kamal [1 ]
El Boujaoui, Hicham [1 ]
Kchikech, Mustapha [2 ]
机构
[1] Ibn Zohr Univ, Natl Sch Appl Sci ENSA, BP 1136, Agadir, Morocco
[2] Polydisciplinary Fac Safi, Modeling & Combinatorial Lab, BP 4162, Safi 46000, Morocco
关键词
frequency assignment; L(2; 1)-labeling; Mycielski construction; matching; CHROMATIC NUMBER; LABELING GRAPHS;
D O I
10.7151/dmgt.2457
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the L(2, 1)-labeling of the Mycielski graph and the iterated Mycielski graph of graphs in general. For a graph G and all t >= 1, we give sharp bounds for lambda(M-t(G)) the L(2, 1)-labeling number of the t-th iterated Mycielski graph in terms of the number of iterations t, the order n of G, the maximum degree Delta, and lambda(G) the L(2, 1)-labeling number of G. For t = 1, we present necessary and sufficient conditions between the 4-star matching number of the complement graph and lambda(M(G)) the L(2, 1)-labeling number of the Mycielski graph of a graph, with some applications to special graphs. For all t >= 2, we prove that for any graph G of order n, we have 2(t)(-1)(n + 2) - 2 <= lambda(M-t(G)) <= 2(t)(n + 1) - 2. Thereafter, we characterize the graphs achieving the upper bound 2(t)(n+1)-2, then by using the Marriage Theorem and Tutte's characterization of graphs with a perfect 2-matching, we characterize all graphs without isolated vertices achieving the lower bound 2(t)(-1)(n + 2) - 2. We determine the L(2, 1)-labeling number for the Mycielski graph and the iterated Mycielski graph of some graph classes.
引用
收藏
页码:489 / 518
页数:30
相关论文
共 50 条
  • [21] L(2,1)-labelings on the modular product of two graphs
    Shao, Zhendong
    Solis-Oba, Roberto
    THEORETICAL COMPUTER SCIENCE, 2013, 487 : 74 - 81
  • [22] L(2; 1; 1)-labeling of interval graphs
    Amanathulla, Sk.
    Bera, Biswajit
    Pal, Madhumangal
    INTERNATIONAL JOURNAL OF MATHEMATICS FOR INDUSTRY, 2022, 14 (01):
  • [23] A 116/13-Approximation Algorithm for L(2,1)-Labeling of Unit Disk Graphs
    Ono, Hirotaka
    Yamanaka, Hisato
    THEORY AND PRACTICE OF COMPUTER SCIENCE, SOFSEM 2019, 2019, 11376 : 379 - 391
  • [24] L(h, 1, 1)-labeling of outerplanar graphs
    Calamoneri, Tiziana
    Fusco, Emanuele G.
    Tan, Richard B.
    Vocca, Paola
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2009, 69 (02) : 307 - 321
  • [25] PAIR L(2,1)-LABELINGS OF INFINITE GRAPHS
    Yeh, Roger K.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2019, 39 (01) : 257 - 269
  • [26] L(3,2,1)-LABELING OF GRAPHS
    Chia, Ma-Lian
    Kuo, David
    Liao, Hong-ya
    Yang, Cian-Hui
    Yeh, Roger K.
    TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (06): : 2439 - 2457
  • [27] The Δ2-conjecture for L(2,1)-labelings is true for total graphs
    Duan, Ziming
    Lv, Pingli
    Miao, Lianying
    Miao, Zhengke
    Wang, Cuiqi
    APPLIED MATHEMATICS LETTERS, 2011, 24 (09) : 1491 - 1494
  • [28] L(3,1)-labeling of circulant graphs
    Bhoumik, Soumya
    Mitra, Sarbari
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2022, 14 (01)
  • [29] The game L(d, 1)-labeling problem of graphs
    Chia, Ma-Lian
    Hsu, Huei-Ni
    Kuo, David
    Liaw, Sheng-Chyang
    Xu, Zi-teng
    DISCRETE MATHEMATICS, 2012, 312 (20) : 3037 - 3045
  • [30] On circular-L(2,1)-labellings of products of graphs
    Sun, Yan
    Lin, Wensong
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2015, 92 (03) : 441 - 450