L(2,1)-Labeling of the Iterated Mycielski Graphs of Graphs and Some Problems Related to Matching Problems

被引:4
|
作者
Dliou, Kamal [1 ]
El Boujaoui, Hicham [1 ]
Kchikech, Mustapha [2 ]
机构
[1] Ibn Zohr Univ, Natl Sch Appl Sci ENSA, BP 1136, Agadir, Morocco
[2] Polydisciplinary Fac Safi, Modeling & Combinatorial Lab, BP 4162, Safi 46000, Morocco
关键词
frequency assignment; L(2; 1)-labeling; Mycielski construction; matching; CHROMATIC NUMBER; LABELING GRAPHS;
D O I
10.7151/dmgt.2457
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the L(2, 1)-labeling of the Mycielski graph and the iterated Mycielski graph of graphs in general. For a graph G and all t >= 1, we give sharp bounds for lambda(M-t(G)) the L(2, 1)-labeling number of the t-th iterated Mycielski graph in terms of the number of iterations t, the order n of G, the maximum degree Delta, and lambda(G) the L(2, 1)-labeling number of G. For t = 1, we present necessary and sufficient conditions between the 4-star matching number of the complement graph and lambda(M(G)) the L(2, 1)-labeling number of the Mycielski graph of a graph, with some applications to special graphs. For all t >= 2, we prove that for any graph G of order n, we have 2(t)(-1)(n + 2) - 2 <= lambda(M-t(G)) <= 2(t)(n + 1) - 2. Thereafter, we characterize the graphs achieving the upper bound 2(t)(n+1)-2, then by using the Marriage Theorem and Tutte's characterization of graphs with a perfect 2-matching, we characterize all graphs without isolated vertices achieving the lower bound 2(t)(-1)(n + 2) - 2. We determine the L(2, 1)-labeling number for the Mycielski graph and the iterated Mycielski graph of some graph classes.
引用
收藏
页码:489 / 518
页数:30
相关论文
共 50 条
  • [1] L(2,1)-Labeling of Kneser graphs and coloring squares of Kneser graphs
    Shao, Zhendong
    Averbakh, Igor
    Solis-Oba, Roberto
    DISCRETE APPLIED MATHEMATICS, 2017, 221 : 106 - 114
  • [2] L(2,1)-LABELING OF TRAPEZOID GRAPHS
    Paul, S.
    Amanathulla, S. K.
    Pal, M.
    Pal, A.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2024, 14 (03): : 1254 - 1263
  • [3] L(2,1)-labeling of interval graphs
    Paul S.
    Pal M.
    Pal A.
    Journal of Applied Mathematics and Computing, 2015, 49 (1-2) : 419 - 432
  • [4] L(2,1)-LABELING OF CIRCULANT GRAPHS
    Mitra, Sarbari
    Bhoumik, Soumya
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2019, 39 (01) : 143 - 155
  • [5] L(2,1)-labeling of oriented planar graphs
    Calamoneri, T.
    Sinaimeri, B.
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (12) : 1719 - 1725
  • [6] L(3,2,1)-Labeling problems on trapezoid graphs
    Amanathulla, S. K.
    Pal, Madhumangal
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2021, 13 (05)
  • [7] On L(2,1)-labeling of generalized Petersen graphs
    Huang, Yuan-Zhen
    Chiang, Chun-Ying
    Huang, Liang-Hao
    Yeh, Hong-Gwa
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2012, 24 (03) : 266 - 279
  • [8] L(2,1)-labeling for brick product graphs
    Shao, Zehui
    Xu, Jin
    Yeh, Roger K.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 31 (02) : 447 - 462
  • [9] L(2,1)-labeling of dually chordal graphs and strongly orderable graphs
    Panda, B. S.
    Goel, Preeti
    INFORMATION PROCESSING LETTERS, 2012, 112 (13) : 552 - 556
  • [10] L(2,1)-labeling of perfect elimination bipartite graphs
    Panda, B. S.
    Goel, Preeti
    DISCRETE APPLIED MATHEMATICS, 2011, 159 (16) : 1878 - 1888