L(2,1)-Labeling of the Iterated Mycielski Graphs of Graphs and Some Problems Related to Matching Problems

被引:4
作者
Dliou, Kamal [1 ]
El Boujaoui, Hicham [1 ]
Kchikech, Mustapha [2 ]
机构
[1] Ibn Zohr Univ, Natl Sch Appl Sci ENSA, BP 1136, Agadir, Morocco
[2] Polydisciplinary Fac Safi, Modeling & Combinatorial Lab, BP 4162, Safi 46000, Morocco
关键词
frequency assignment; L(2; 1)-labeling; Mycielski construction; matching; CHROMATIC NUMBER; LABELING GRAPHS;
D O I
10.7151/dmgt.2457
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the L(2, 1)-labeling of the Mycielski graph and the iterated Mycielski graph of graphs in general. For a graph G and all t >= 1, we give sharp bounds for lambda(M-t(G)) the L(2, 1)-labeling number of the t-th iterated Mycielski graph in terms of the number of iterations t, the order n of G, the maximum degree Delta, and lambda(G) the L(2, 1)-labeling number of G. For t = 1, we present necessary and sufficient conditions between the 4-star matching number of the complement graph and lambda(M(G)) the L(2, 1)-labeling number of the Mycielski graph of a graph, with some applications to special graphs. For all t >= 2, we prove that for any graph G of order n, we have 2(t)(-1)(n + 2) - 2 <= lambda(M-t(G)) <= 2(t)(n + 1) - 2. Thereafter, we characterize the graphs achieving the upper bound 2(t)(n+1)-2, then by using the Marriage Theorem and Tutte's characterization of graphs with a perfect 2-matching, we characterize all graphs without isolated vertices achieving the lower bound 2(t)(-1)(n + 2) - 2. We determine the L(2, 1)-labeling number for the Mycielski graph and the iterated Mycielski graph of some graph classes.
引用
收藏
页码:489 / 518
页数:30
相关论文
共 24 条
[1]   ON FACTORS WITH GIVEN COMPONENTS [J].
AMAHASHI, A ;
KANO, M .
DISCRETE MATHEMATICS, 1982, 42 (01) :1-6
[2]   GRAPH CLASSES GENERATED BY MYCIELSKIANS [J].
Borowiecki, Mieczyslaw ;
Borowiecki, Piotr ;
Drgas-Burchardt, Ewa ;
Sidorowicz, Elzbieta .
DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2020, 40 (04) :1163-1173
[3]   The L(h, k)-Labelling Problem: An Updated Survey and Annotated Bibliography [J].
Calamoneri, Tiziana .
COMPUTER JOURNAL, 2011, 54 (08) :1344-1371
[4]   A lower bound on the chromatic number of Mycielski graphs [J].
Caramia, M ;
Dell'Olmo, P .
DISCRETE MATHEMATICS, 2001, 235 (1-3) :79-86
[5]   The L(2,1)-labeling problem on graphs [J].
Chang, GJ ;
Kuo, D .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1996, 9 (02) :309-316
[6]   Circular chromatic numbers of Mycielski's graphs [J].
Chang, GJ ;
Huang, LL ;
Zhu, XD .
DISCRETE MATHEMATICS, 1999, 205 (1-3) :23-37
[7]   Fixed-parameter complexity of λ-labelings [J].
Fiala, J ;
Kloks, T ;
Kratochvíl, J .
DISCRETE APPLIED MATHEMATICS, 2001, 113 (01) :59-72
[8]   Hamiltonicity, diameter, domination, packing, and biclique partitions of Mycielski's graphs [J].
Fisher, DC ;
McKenna, PA ;
Boyer, ED .
DISCRETE APPLIED MATHEMATICS, 1998, 84 (1-3) :93-105
[9]   RELATING PATH COVERINGS TO VERTEX LABELINGS WITH A CONDITION AT DISTANCE-2 [J].
GEORGES, JP ;
MAURO, DW ;
WHITTLESEY, MA .
DISCRETE MATHEMATICS, 1994, 135 (1-3) :103-111
[10]   On the L(p, 1)-labelling of graphs [J].
Goncalves, D. .
DISCRETE MATHEMATICS, 2008, 308 (08) :1405-1414